In[]:=
SetDirectory[NotebookDirectory[]];<<ABCInterpolator.m
In[]:=
X1=Collect[n^(-p)Integrate[(t^(5/2)/n^5-t^(15/2))t^(-p)(A+Btκ)E^(-Ctκ),{t,0,Infinity},GenerateConditions->False],n]
Out[]=
-5-p
n
-+p
19
2
(Cκ)
6
C
5
κ
7
2
5
C
5
κ
9
2
-p
n
-+p
19
2
(Cκ)
17
2
19
2
In[]:=
-5-p
n
-+p
19
2
(Cκ)
6
C
5
κ
7
2
5
C
5
κ
9
2
-p
n
-+p
19
2
(Cκ)
17
2
19
2
Out[]=
κ-ACGamma-p-BGamma-pZeta[-1+p]
-+p
19
2
(Cκ)
17
2
19
2
Zeta[p]
κAGamma-p+BGamma-pZeta[4+p]
-+p
19
2
(Cκ)
6
C
5
κ
7
2
5
C
5
κ
9
2
Zeta[5+p]
In[]:=
I1=FullSimplify/.{p->17/2+q,κ->1}
κ-ACGamma-p-BGamma-pZeta[-1+p]
-+p
19
2
(Cκ)
17
2
19
2
pZeta[p]
Out[]=
2(-AC+Bq)Gamma[-q]Zeta+q
-1+q
C
15
2
(17+2q)Zeta+q
17
2
In[]:=
In[]:=
I2=FullSimplify/.{p->19/2-6+q,κ->1}
κAGamma-p+BGamma-pZeta[4+p]
-+p
19
2
(Cκ)
6
C
5
κ
7
2
5
C
5
κ
9
2
pZeta[5+p]
Out[]=
2(AC-Bq)Gamma[-q]Zeta+q
-1+q
C
15
2
(7+2q)Zeta+q
17
2
In[]:=
In[]:=
I1+I2//FullSimplify
Out[]=
20(AC-Bq)Gamma[-q]Zeta+q
-1+q
C
15
2
(119+48q+4)Zeta+q
2
q
17
2
In[]:=
Factor[(119+48q+4)]
2
q
Out[]=
(7+2q)(17+2q)
In[]:=
Gamma[-q]Zeta+q
15
2
(7+2q)(17+2q)Zeta+q
17
2
Out[]=
Gamma[-p]Zeta+p
15
2
(7+2p)(17+2p)Zeta+p
17
2
In[]:=
F==20(AC-Bq)
-1+q
C
Out[]=
F20(AC-Bq)
-1+q
C
In[]:=
pts=FunctionPoles,{Abs[p]<50},p
Gamma[-p]Zeta+p
15
2
(7+2p)(17+2p)Zeta+p
17
2
Out[]=
-,1,-,1,-,1,-,1,-,1,-,1,-,1,-,1,-,1,-,1,-,1,-,1,-,1,-,1,-,1,-,1,-,1,-,1,-,1,-,1,-,1,-,1,-,1,{0,1},{1,1},{2,1},{3,1},{4,1},{5,1},{6,1},{7,1},{8,1},{9,1},{10,1},{11,1},{12,1},{13,1},{14,1},{15,1},{16,1},{17,1},{18,1},{19,1},{20,1},{21,1},{22,1},{23,1},{24,1},{25,1},{26,1},{27,1},{28,1},{29,1},{30,1},{31,1},{32,1},{33,1},{34,1},{35,1},{36,1},{37,1},{38,1},{39,1},{40,1},{41,1},{42,1},{43,1},{44,1},{45,1},{46,1},{47,1},{48,1},{49,1},(-17+2ZetaZero[-9]),1,(-17+2ZetaZero[-8]),1,(-17+2ZetaZero[-7]),1,(-17+2ZetaZero[-6]),1,(-17+2ZetaZero[-5]),1,(-17+2ZetaZero[-4]),1,(-17+2ZetaZero[-3]),1,(-17+2ZetaZero[-2]),1,(-17+2ZetaZero[-1]),1,(-17+2ZetaZero[1]),1,(-17+2ZetaZero[2]),1,(-17+2ZetaZero[3]),1,(-17+2ZetaZero[4]),1,(-17+2ZetaZero[5]),1,(-17+2ZetaZero[6]),1,(-17+2ZetaZero[7]),1,(-17+2ZetaZero[8]),1,(-17+2ZetaZero[9]),1
97
2
93
2
89
2
85
2
81
2
77
2
73
2
69
2
65
2
61
2
57
2
53
2
49
2
45
2
41
2
37
2
33
2
29
2
25
2
21
2
17
2
13
2
7
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
In[]:=
ComplexListPlot[pts,PlotStyle->{Red},PlotLabel->"Poles of Mellin transform of H[κ]"]
Out[]=
In[]:=
FunctionPoles,p//TableForm
Gamma[-p]Zeta+p
15
2
(7+2p)(17+2p)Zeta+p
17
2
Out[]//TableForm=
- 17 2 | 1 |
- 13 2 | 1 |
- 7 2 | 1 |
1 | |
1 | |
1 | |
Indeterminate |
In[]:=
{a,b,c}=ABC[0.3]
Out[]=
{1.14196,0.00305917,0.0601122}
In[]:=
PlotReLog(0.1c)^q/.q->0.5+Ix,{x,-5,5},PlotRange->All
20c(-ac+bq)Gamma[-q]Zeta+q
15
2
(119+48q+4)Zeta+q
2
q
17
2
Out[]=
In[]:=
Residue,{q,0}
20(AC-Bq)Gamma[-q]Zeta+q
-1+q
C
15
2
(119+48q+4)Zeta+q
2
q
17
2
Out[]=
-
20AZeta
15
2
119Zeta
17
2