In[]:=
ClearAll[BernSum];BernSum[n_,0]=1;BernSum[0,1]=0;BernSum[n_,1]:=;BernSum[n_,m_]/;m>n:=0;BernSum[n_,m_]:=Sum[BernoulliB[2j1]/(2j1)!BernoulliB[2j2]/(2j2)!BernSum[n-1,m-j1-j2],{j1,0,m},{j2,Max[0,m-n+1-j1],m-j1}];A[n_,N_]:=(-1)^nN-(-1)^n2^(2n)Sum[BernoulliB[2j0]/(2j0)!BernSum[n,n-j0]N^(2j0),{j0,0,n}];
n
6
In[]:=
BernSum[n,0]
Out[]=
1
In[]:=
BernSum[n,1]
Out[]=
n
6
In[]:=
FunctionExpand[-(-1)^n2^(2n)(BernoulliB[2j0]/(2j0)!BernSum[n,1]N^(2j0))/.j0->n-1]
Out[]=
-nBernoulliB[2(-1+n)]
n
(-1)
-1+2n
2
2(-1+n)
N
3Gamma[-1+2n]
In[]:=
FunctionExpand[Zeta[2n]]
(-1)^(k-1)BernoulliB[2k]2^(2k-1)Pi^(2k)/(2k)!
Out[]=
-1+k
(-1)
-1+2k
2
2k
π
(2k)!
In[]:=
Brule=BernoulliB[2k_]:>(2k)!Zeta[2k]
-1+k
(-1)
1-2k
2
-2k
π
Out[]=
BernoulliB[2k_](2k)!Zeta[2k]
-1+k
(-1)
1-2k
2
-2k
π
In[]:=
Simplify[(-(-1)^n2^(2n)(BernoulliB[2j0]/(2j0)!BernSum[n,1]q^(2j0-2n))/.j0->n-1)/.Brule]
Out[]=
-
4nZeta[2(-1+n)]
2n
(-1)
2-2n
π
3
2
q