(2E^(Iω(N-2-2k+q))-E^(Iω(N-2k+q))-E^(Iω(N-4-2k+q)))2^(-N)(Binomial[N-2,(N+q)/2-1]2-Binomial[N-2,(N+q)/2]-Binomial[N-2,(N+q)/2-2])
In[]:=
2^(-N)Binomial[N-2,(N+q)/2-1]FullSimplify[(2-(Binomial[N-2,(N+q)/2]+Binomial[N-2,(N+q)/2-2])/Binomial[N-2,(N+q)/2-1])]
Out[]=
2-N
2
2
q
N+q
2
2
N
2
q
In[]:=
2-N
2
2
q
N+q
2
2
N
2
q
In[]:=
2-N
2
2
q
(-)NBeta[(N+q)/2+1,(N-q)/2+1]
2
N
2
q
N+q
2
In[]:=
FullSimplify(N-q)(N+q)(N-)Beta1+,1+
-N
2
2
q
N(-1+)(-)
2
N
2
N
2
q
N+q
2
N-q
2
Out[]=
-N
2
2
q
N(-1+)Beta1+,1+
2
N
N+q
2
N-q
2
In[]:=
h[v_,N_]:=Log[1-v^2]-(3+N)Log[2]-LogBeta1+,1+
N+vSqrt[N]
2
N-vSqrt[N]
2
In[]:=
FullSimplify[Exp[Series[FullSimplify[Normal[Series[h[v,N],{N,Infinity,2}]],{N>1,0<v<1}],{N,Infinity,2}]],{N>1,0<v<1}]
Out[]=
-+(9-3-7+)-+
(-1+)
-
2
v
2
2
v
N
4
2π
-
2
v
2
2
v
4
v
6
v
1
N
48
2π
(-1+)(-315+60+450-108+5)
-
2
v
2
2
v
2
v
4
v
6
v
8
v
3/2
1
N
5760
2π
2
O
1
N
In[]:=
UniqueFractions[L_]:=Select[Sort[Flatten[UniqueElements[TensorProduct[Range[L],1/Range[L]]]]],#<1&];
In[]:=
UniqueFractions[100];
ProbLog[L_,digits_]:=Block{fractions,Tau,taus,LW},fractions=Select[Sort[Flatten[UniqueElements[TensorProduct[Range[L],1/Range[L]]]]],#<1&];Tau[f_]:=With{M=(L+1)^2,q=Denominator[f],p=Numerator[f]},NLog(M-),digits;taus=Sort[ParallelTable[Tau[fractions[[i]]],{i,Length[fractions]}]];LW=N[Log[1.-(#-0.5)/Length[taus]],16]&/@Range[Length[taus]];Transpose[{taus,LW}]
-3-M
2
2
q
2
Cot
pπ
q
(1+M)Beta1+,1+
M+q
2
M-q
2
fitdata=ProbLog[500,16];
lowdata=Select[fitdata,#[[1]]<1&];lowmodel=LinearModelFit[lowdata,{x,x^2,x^3},x]
Out[]=
FittedModel
In[]:=
highdata=Select[fitdata,#[[1]]>2.5&];highmodel=LinearModelFit[highdata,{x},x]
Out[]=
FittedModel