In[]:=
Clear["Global`*"];​​ω=2000;​​c1[ζ_]:=-ζω+ω
2
ζ
-1
;​​c2[ζ_]:=-ζω-ω
2
ζ
-1
;​​H[ζ_]:=
2
ω
(s-c1[ζ])(s-c2[ζ])
;​​
StepR[t_,ζ_]:=
2
ω
(c1[ζ]-c2[ζ])
*
c1[ζ]t

-1
c1[ζ]
-
c2[ζ]t

-1
c2[ζ]
(*UnitImpulseIntegratedbyhandUnitstepResponse*)
H1=
2
ω
2
(s+ω)
(*Transferfunctionwhenζ=1*)​​(*RelevantTimeDomainFunctiont*
-ωt

*u(t)StepR1meanstheIntegralofitasbelow*)
In[]:=
StepR1[t_]:=
2
ω
t
∫
0
τ*Exp[-ωτ]*UnitStep[τ]τ​​
In[]:=
Plot[{StepR[t,0.25],StepR[t,0.5],StepR[t,0.75],StepR1[t],StepR[t,1.5]},{t,0,0.010},PlotRangeAll,PlotLegends"Expressions"]
Out[]=
StepR(t,0.25)
StepR(t,0.5)
StepR(t,0.75)
StepR1(t)
StepR(t,1.5)
In[]:=
Manipulate[Control`PoleZeroPlot[{H[ζ]},PlotLabelStringForm["Pole Zero Plot for ζ = `1`",ζ],PlotLegendsStringForm["ζ = `1` ",ζ],PoleZeroMarkersStyle["x",Large,BackgroundCyan],AxesLabel{"Re","Im"}],{{ζ,0.5},0,1}]
Out[]=
​
ζ
ζ = 0.5