Wolfram Microcredentials

AI Programming with Wolfram Language

1
.
Wolfram Notebook and Language Basics

AI Assistance in Wolfram Notebooks

◼
  • Accessing Notebook Assistant
  • ◼
  • Asking for Code and Improving Code
  • ◼
  • Computing with Images and Real-World Data
  • ◼
  • Publishing a Web Form
  • ◼
  • Working with Chat Cells
  • ◼
  • Quiz 1
  • Working with Wolfram Notebooks

    ◼
  • Adding Content to a Notebook
  • ◼
  • Cells in a Notebook
  • ◼
  • Writing and Evaluating Code
  • ◼
  • Useful Things to Know
  • ◼
  • Using Natural Language for Computation
  • ◼
  • LLM-Based Input Options
  • ◼
  • Quiz 2
  • Getting Started with Wolfram Language

    ◼
  • Try a Few Things
  • ◼
  • Lists
  • ◼
  • Structure of Expressions
  • ◼
  • Repeated Evaluation
  • ◼
  • Manipulate
  • ◼
  • Immediate and Delayed Assignment
  • ◼
  • Defining a Function
  • ◼
  • Pure Functions
  • ◼
  • Tips and Tricks
  • ◼
  • Quiz 3
  • 2
    .
    Machine Learning Superfunctions

    Supervised Learning Functions

    ◼
  • Classify
  • ◼
  • Classification Exercise
  • ◼
  • A Workflow for Classification
  • ◼
  • Predict
  • ◼
  • Predicting Sequential Data
  • ◼
  • Training Methods
  • ◼
  • Options for Classify and Predict
  • ◼
  • Working around Common Issues
  • ◼
  • Quiz 1
  • Unsupervised Learning Functions

    ◼
  • Feature Extraction
  • ◼
  • Feature Space Distance and Clustering
  • ◼
  • Anomaly Detection, LearnDistribution and Missing Values
  • ◼
  • Quiz 2
  • 3
    .
    Wolfram Neural Net Framework

    Neural Net Overview

    ◼
  • Neural Nets through the Years
  • ◼
  • Image Processing
  • ◼
  • Audio and Video Processing
  • ◼
  • Text Processing
  • ◼
  • What Is a Neural Net Exactly?
  • ◼
  • As Explained by a Neural Net Pioneer
  • ◼
  • Building Blocks of Neural Nets, Part 1
  • ◼
  • Building Blocks of Neural Nets, Part 2
  • ◼
  • Wolfram Neural Net Repository
  • ◼
  • Building a Simple Network
  • ◼
  • Building a More Complex Network
  • ◼
  • Training Your Own Network
  • ◼
  • Training a Pre-built Model
  • ◼
  • Using Existing Neural Net Architectures
  • ◼
  • Quiz 1
  • Working in the Framework

    ◼
  • Why Use Neural Networks?
  • ◼
  • Neural Nets as Differentiable Programs
  • ◼
  • LinearLayer; Layer Properties
  • ◼
  • Two-Class Classification
  • ◼
  • Three-Class Classification
  • ◼
  • Data Encoding; Training and Validation
  • ◼
  • Stacking Layers
  • ◼
  • Solving XOR with a Deep Network
  • ◼
  • Computational Graphs
  • ◼
  • Quiz 2
  • 4
    .
    Building Applications with the Neural Net Repository

    Image Applications

    ◼
  • Introducing the Neural Net Repository
  • ◼
  • Image and Video Classification
  • ◼
  • Semantic Segmentation
  • ◼
  • Object Detection
  • ◼
  • Image Captioning
  • ◼
  • Image Question Answering
  • ◼
  • Exploration: Mushroom Image Classifier
  • ◼
  • Feature Extraction
  • ◼
  • Generate Images from Text
  • ◼
  • Quiz 1
  • Text and Audio Applications

    ◼
  • Bidirectional “Encoder” Transformers
  • ◼
  • Character-Level and Word-Level Models
  • ◼
  • Exploration: Star Name Generation
  • ◼
  • Audio Identification
  • ◼
  • Speech to Text and Translation
  • ◼
  • Exploration: Audio Classifier
  • ◼
  • Quiz 2
  • 5
    .
    Programming with LLM Functions

    What Is a GPT?

    ◼
  • Tokens
  • ◼
  • Basic Layers of a GPT Model
  • ◼
  • Training the GPT Model
  • ◼
  • An Example Using GPT-3.5 Turbo
  • ◼
  • Quiz 1
  • Inside ChatGPT

    ◼
  • Some Neural Nets Groundwork
  • ◼
  • The Concept of Embeddings
  • ◼
  • ChatGPT Foundations, Part 1
  • ◼
  • ChatGPT Foundations, Part 2
  • ◼
  • The Fine-Tuning of ChatGPT
  • ◼
  • Quiz 2
  • LLM Programming

    ◼
  • A First Look at Chatbots
  • ◼
  • Setting Up Access to Models
  • ◼
  • Chat Notebooks
  • ◼
  • Personas from the Prompt Repository
  • ◼
  • Using the Definition Notebook
  • ◼
  • Prompt Engineering
  • ◼
  • Experimenting with Prompts
  • ◼
  • Dynamic Prompts
  • ◼
  • Adding Computational Tools
  • ◼
  • Using Tools
  • ◼
  • Non-Chat Uses of LLMs
  • ◼
  • Chain of Thought with LLMGraph
  • ◼
  • Model Configuration
  • ◼
  • Creating Custom Chat Interfaces
  • ◼
  • Asynchronous and Parallel Access
  • ◼
  • Quiz 3
  • 6
    .
    Deep Learning for Text Analysis

    Overview and the Chat Interface

    ◼
  • Pre-trained LLMs
  • ◼
  • The Chat Notebook Interface
  • ◼
  • Quiz 1
  • Machine Learning Concepts

    ◼
  • Machine Learning Concepts, Part 1
  • ◼
  • Machine Learning Concepts, Part 2
  • ◼
  • Machine Learning Concepts, Part 3
  • ◼
  • Quiz 2
  • Prompt Engineering

    ◼
  • Using LLMFunction in Prompts
  • ◼
  • Using Lists of Prompts
  • ◼
  • Using Examples in Prompts
  • ◼
  • Quiz 3
  • Multistep and Tool-Augmented Chat

    ◼
  • Augmenting Chat with Multistep
  • ◼
  • Using TextSummarize
  • ◼
  • Using Tools to Prevent Hallucination
  • ◼
  • Quiz 4
  • 7
    .
    Convolutional Networks for Image Computations

    Basics of Image Classification

    ◼
  • Overview and Human Visual System
  • ◼
  • Properties of Image Data
  • ◼
  • Network Encoders
  • ◼
  • Working with CIFAR-10 Dataset; Arrays and Tensors
  • ◼
  • Convolution Layers
  • ◼
  • ElementwiseLayer and ReLU
  • ◼
  • Pooling and Softmax Layer
  • ◼
  • Loss Layer and Cross Entropy
  • ◼
  • Quiz 1
  • Neural Net Training and Analysis

    ◼
  • Detecting and Avoiding Overfitting
  • ◼
  • Dropout Layers
  • ◼
  • Optical Illusions
  • ◼
  • Receptive Fields and Sensitivity Maps
  • ◼
  • Network Gradient Analysis
  • ◼
  • Image Feature Visualization
  • ◼
  • Quiz 2
  • Neural Net Design

    ◼
  • Inception Module
  • ◼
  • ResNets
  • ◼
  • U-Nets
  • ◼
  • EfficientNet: Squeeze & Expand
  • ◼
  • Transformers
  • ◼
  • Quiz 3
  • Image Applications

    ◼
  • Image Retrieval
  • ◼
  • Object Detection
  • ◼
  • Image Reconstruction
  • ◼
  • Cycle GAN
  • ◼
  • Image Segmentation
  • ◼
  • Quiz 4
  • 8
    .
    Deep Learning Applications for Audio and Video Applications

    Data Explanation

    ◼
  • Some Examples
  • ◼
  • Audio Net Encoders
  • ◼
  • Audio Data Augmentation
  • ◼
  • Video Net Encoder
  • ◼
  • Net Decoders
  • ◼
  • Build an Audio Classifier
  • ◼
  • Quiz 1
  • Net Architectures

    ◼
  • Simple Multilayer Perceptron
  • ◼
  • Convolution
  • ◼
  • Recurrence
  • ◼
  • Attention
  • ◼
  • Quiz 2
  • Applications

    ◼
  • Feature Extraction
  • ◼
  • Audio Identification
  • ◼
  • Speech Recognition
  • ◼
  • Video Denoising
  • ◼
  • Video Classification
  • ◼
  • Transfer Learning
  • ◼
  • Quiz 3