374 Note for Chapter 4: How to find a Wronskian of {f1, f2, ... , fn}, using Mathematica

Define the functions:
In[]:=
f1[x_]:=E^x​​f2[x_]:=Sin[x]​​f3[x_]:=Cos[x]
Make an n x n matrix of functions whose ith row contains the (i-1)st derivatives of {f1, f2, ... , fn}.
A=​​ {f1[x],f2[x],f3[x]},​​ {f1'[x],f2'[x],f3'[x]},​​ {f1''[x],f2''[x],f3''[x]}​​ 
Out[]=
{{
x

,Sin[x],Cos[x]},{
x

,Cos[x],-Sin[x]},{
x

,-Sin[x],-Cos[x]}}
Here's how to make A look more like a matrix we are used to seeing:
MatrixForm[A]
Out[]//MatrixForm=
x

Sin[x]
Cos[x]
x

Cos[x]
-Sin[x]
x

-Sin[x]
-Cos[x]
Define the Wronskian of {f1, f2, ... , fn}:
In[]:=
W[x_]:=Det[A]
To compute the Wronskian, which is a function of x, evaluate W at x:
W[x]
Out[]=
-2
x

2
Cos[x]
-2
x

2
Sin[x]
Simplify[W[x]]
Out[]=
-2
x

Plot[W[x],{x,-2,3}]
Out[]=
Since the Wronskian is never zero, we conclude that the functions {E^x,Sin[x], Cos[x]} are linearly independent on any real interval!
Here's how to find a Wronskian of 4 functions:
In[]:=
f1[x_]:=1​​f2[x_]:=x​​f3[x_]:=x^2​​f4[x_]:=Cos[x]
B=​​ {f1[x],f2[x],f3[x],f4[x]},​​ {f1'[x],f2'[x],f3'[x],f4'[x]},​​ {f1''[x],f2''[x],f3''[x],f4''[x]},​​ {D[f1[x],{x,3}],D[f2[x],{x,3}],D[f3[x],{x,3}],D[f4[x],{x,3}]}​​ 
Out[]=
{{1,x,
2
x
,Cos[x]},{0,1,2x,-Sin[x]},{0,0,2,-Cos[x]},{0,0,0,Sin[x]}}
MatrixForm[B]
Out[]//MatrixForm=
1
x
2
x
Cos[x]
0
1
2x
-Sin[x]
0
0
2
-Cos[x]
0
0
0
Sin[x]
In[]:=
W1[x_]:=Det[B]
W1[x]
Out[]=
2Sin[x]