374 - The Work for Examples 1 and 2 in Section 8.6
374 - The Work for Examples 1 and 2 in Section 8.6
Example 1 Work
Example 1 Work
A={{1,-2,2},{-2,1,-2},{2,-2,1}}
Out[]=
{{1,-2,2},{-2,1,-2},{2,-2,1}}
MatrixForm[A]
Out[]//MatrixForm=
1 | -2 | 2 |
-2 | 1 | -2 |
2 | -2 | 1 |
Det[A-m*IdentityMatrix[3]]
Out[]=
5+9m+3-
2
m
3
m
Simplify[%]
Out[]=
-((-5+m))
2
(1+m)
MatrixForm[A+1*IdentityMatrix[3]]
Out[]//MatrixForm=
2 | -2 | 2 |
-2 | 2 | -2 |
2 | -2 | 2 |
MatrixForm[RowReduce[%]]
Out[]//MatrixForm=
1 | -1 | 1 |
0 | 0 | 0 |
0 | 0 | 0 |
MatrixForm[A-5*IdentityMatrix[3]]
Out[]//MatrixForm=
-4 | -2 | 2 |
-2 | -4 | -2 |
2 | -2 | -4 |
MatrixForm[RowReduce[%]]
Out[]//MatrixForm=
1 | 0 | -1 |
0 | 1 | 1 |
0 | 0 | 0 |
Example 2 Work
Example 2 Work
In[]:=
Clear[A]
A={{3,-18},{2,-9}}
Out[]=
{{3,-18},{2,-9}}
MatrixForm[A]
Out[]//MatrixForm=
3 | -18 |
2 | -9 |
Eigenvalues[A]
Out[]=
{-3,-3}
Eigenvectors[A]
Out[]=
{{3,1},{0,0}}
In[]:=
Solve[(A+3*IdentityMatrix[2]).{{c1},{c2}}{{3},{1}},{c1,c2}]
Out[]=
c2-+
1
6
c1
3
Thus,withc2=0,c1=.
1
2
