374 - More Work for Examples in Section 8.6
374 - More Work for Examples in Section 8.6
More work for Example 1
More work for Example 1
A={{1,-2,2},{-2,1,-2},{2,-2,1}}
Out[]=
{{1,-2,2},{-2,1,-2},{2,-2,1}}
MatrixForm[A]
Out[]//MatrixForm=
1 | -2 | 2 |
-2 | 1 | -2 |
2 | -2 | 1 |
Eigenvalues[A]
Out[]=
{5,-1,-1}
Eigenvectors[A]
Out[]=
{{1,-1,1},{-1,0,1},{1,1,0}}
Eigensystem[A]
Out[]=
{{5,-1,-1},{{1,-1,1},{-1,0,1},{1,1,0}}}
In[]:=
W[t_]:=Transpose[{{1,-1,1},{-1,0,1},{1,1,0}}]
5t
-t
-t
MatrixForm[W[t]]
Out[]//MatrixForm=
5t | - -t | -t |
- 5t | 0 | -t |
5t | -t | 0 |
Det[W[t]]
Out[]=
-3
3t
Since det[W(t)] is non-zero for all t, the functions , , and are linearly independent on (-∞,∞), by Theorem 8.5.
X1(t)=
5t |
- 5t |
5t |
X2(t)=
- -t |
0 |
-t |
X3(t)=
-t |
-t |
0 |
More work for Example 2
More work for Example 2
In[]:=
Clear[W]
In[]:=
W[t_]:=Transpose{3,1},{3,1}t+,0
-3t
1
2
-3t
MatrixForm[W[t]]
Out[]//MatrixForm=
3 -3t | -3t 1 2 |
-3t | -3t |
Det[W[t]]
Out[]=
-
1
2
-6t
Since det[W(t)] is non-zero for all t, the functions and are linearly independent on (-∞,∞)
X1(t)=
3 -3t |
-3t |
X2(t)=
-3t 1 2 |
-3t |