374: Using Mathematica to Find Partial Fraction Decompositions
374: Using Mathematica to Find Partial Fraction Decompositions
These examples are designed to introduce you to the Mathematica commands Factor, Expand, Solve, Together, and Apart. Commands such as these are useful for finding partial fraction decompositions of proper rational functions!
?Factor
Factor[x^3-5x^2-3x-18]
(-6+x)(3+x+)
2
x
Factor[x^5-4x^4-16x^3+19x^2+24x+36]
(-6+x)(-2+x)(3+x)(1+x+)
2
x
?Expand
Expand[(-6+x)(-2+x)(3+x)(1+x+)]
2
x
36+24x+19-16-4+
2
x
3
x
4
x
5
x
?Solve
Solve[x^3-5x^2-3x-18==0,x]
{x6},x(-1-(-1+
1
2
11
),x1
2
11
)Solve[{A+C+D==0,A+B+4D==6,-4A-3C+5D==1,-4A-4B-2C+2D==-2},{A,B,C,D}]
A,B-1,C-5,D
13
3
2
3
?Together
?Apart
Apart[1/(x^5-4x^4-16x^3+19x^2+24x+36)]
1
1548(-6+x)
1
140(-2+x)
1
315(3+x)
7+x
301(1+x+)
2
x
Together[%]
1
(-6+x)(-2+x)(3+x)(1+x+)
2
x
Apart[(6x^2+x-2)/((x+1)^2(x^2-4))]
2
3(-2+x)
1
2
(1+x)
13
3(1+x)
5
2+x
Together[%]
-2+x+6
2
x
(-2+x)(2+x)
2
(1+x)