374 5.1 Note: When m1, m2, m3, and m4 are distinct real numbers,
{
m1*x

,
m2*x

,
m3*x

,
m4*x

}
is linearly independent.

F={
m1*x

,
m2*x

,
m3*x

,
m4*x

}
{
m1x

,
m2x

,
m3x

,
m4x

}
Wronski[F_]:=Table[D[F,{x,i-1}],{i,4}]
MatrixForm[Wronski[F]]
m1x

m2x

m3x

m4x

m1x

m1
m2x

m2
m3x

m3
m4x

m4
m1x

2
m1
m2x

2
m2
m3x

2
m3
m4x

2
m4
m1x

3
m1
m2x

3
m2
m3x

3
m3
m4x

3
m4
Simplify[Det[Wronski[F]]]
(m1+m2+m3+m4)x

(m1-m2)(m1-m3)(m2-m3)(m1-m4)(m2-m4)(m3-m4)
This expression is never zero since the only way it could be zero is if
m
i
=
m
j
for some i not equal to j.
Note that in Mathematica, there is a built-in command called Wronskian!!
Wronskian[F,x]
(m1+m2+m3+m4)x

(m1-m2)(m1-m3)(m2-m3)(m1-m4)(m2-m4)(m3-m4)