Distribution of points within a triangle
using barycentric (area) coordinates
Distribution of points within a triangle
using barycentric (area) coordinates
using barycentric (area) coordinates
3D items
3D items
Unit cube
In[]:=
cube={AmbientLight[RGBColor[.75,.75,.75]],Opacity[.25],Cuboid[{0,0,0},{1,1,1}]};
Axes
In[]:=
axis1=Arrow[{{0,0,0},{1.25,0,0}}];label1=Text[Style[α,FontSize->14],{1.35,0,0}];axis2=Arrow[{{0,0,0},{0,1.25,0}}];label2=Text[Style[β,FontSize->14],{0,1.35,0}];axis3=Arrow[{{0,0,0},{0,0,1.25}}];label3=Text[Style[γ,FontSize->14],{0,0,1.35}];
Projection/normalization plane
In[]:=
plane={AmbientLight[RGBColor[.5,.5,.5]],Opacity[.5],Polygon[{{1,0,0},{0,1,0},{0,0,1}}]};
Line from origin to opposite corner
In[]:=
line={Thick,Red,Line[{{0,0,0},{1,1,1}}]};
Intersection of line and plane
In[]:=
point={PointSize[Large],Red,Point[{1/3,1/3,1/3}]};
Cube alone
Cube alone
In[]:=
Graphics3D[{cube,axis1,axis2,axis3,label1,label2,label3},Lighting->None,Boxed->False,ViewPoint->{10,5,4},ViewVertical->{0,0,1},ImageSize->Medium]
Out[]=
Cube and plane
Cube and plane
In[]:=
Graphics3D[{cube,axis1,axis2,axis3,label1,label2,label3,plane},Lighting->None,Boxed->False,ViewPoint->{10,5,4},ViewVertical->{0,0,1},ImageSize->Medium]
Out[]=
Intersection of line and plane
Intersection of line and plane
In[]:=
Graphics3D[{cube,axis1,axis2,axis3,label1,label2,label3,plane,line,point},Lighting->None,Boxed->False,ViewPoint->{10,-8,4},ViewVertical->{0,0,1},ImageSize->Medium]
Out[]=
Random points projected onto plane
Random points projected onto plane
Points
In[]:=
n=10000;a=RandomReal[1,n];b=RandomReal[1,n];c=RandomReal[1,n];
Normalize to the plane
In[]:=
sum=a+b+c;x=a/sum;y=b/sum;z=c/sum;pts=Transpose[{x,y,z}];
Plot and view down diagonal
In[]:=
ListPointPlot3D[pts,ViewPoint->{1000,1000,1000},ViewVertical->{0,0,1},BoxRatios->{1,1,1},ImageSize->Medium,AxesOrigin->{0,0,0},Boxed->False,PlotRange->Automatic,Ticks->None,AxesStyle->Directive[Black,AbsoluteThickness[1]],PlotStyle->PointSize[.006]]
Out[]=