In[]:=
Clear[z];Clear[M];Clear[a];Clear[e];Clear[r];
In[]:=
f=a*e
Out[]=
ae
In[]:=
B=1/2*ArcCos[-(f^2/r^2+z^2/r^2)+Sqrt[-(4f^2)/r^2+(1+(f^2/r^2+z^2/r^2))^2]]
Out[]=
1
2
2
a
2
e
2
r
2
z
2
r
-+
4
2
a
2
e
2
r
2
1++
2
a
2
e
2
r
2
z
2
r
In[]:=
1
2
2
a
2
e
2
r
2
z
2
r
-+
;4
2
a
2
e
2
r
2
1++
2
a
2
e
2
r
2
z
2
r
In[]:=
Theexteriorpotentialoftheoblatespheroidisgivenby:
In[]:=
P=3M/(2*f)*(B*(1-r^2/(2*f^2)+z^2/f^2)+r^2/(2*f^2)*Sin[B]*Cos[B]-z^2/f^2*Tan[B])
Out[]=
1
2ae
1
2
2
r
2
2
a
2
e
2
z
2
a
2
e
2
a
2
e
2
r
2
z
2
r
-+
+4
2
a
2
e
2
r
2
1++
2
a
2
e
2
r
2
z
2
r
1
2
2
a
2
e
2
r
1
2
2
a
2
e
2
r
2
z
2
r
-+
Sin4
2
a
2
e
2
r
2
1++
2
a
2
e
2
r
2
z
2
r
1
2
2
a
2
e
2
r
2
z
2
r
-+
-4
2
a
2
e
2
r
2
1++
2
a
2
e
2
r
2
z
2
r
2
z
1
2
2
a
2
e
2
r
2
z
2
r
-+
4
2
a
2
e
2
r
2
1++
2
a
2
e
2
r
2
z
2
r
2
a
2
e
In[]:=
TakethepartialdifferentialofPwithrespecttor:
In[]:=
Fprz=D[P,r];
TakethepartialdifferentialofPwithrespecttoz:
In[]:=
Fpzz=D[P,z];
Foranygivenradiusr,thecorrespondingzcoordinateatthesurfaceoftheoblatespheroidisgivenbytheellipticalrelationshp:
In[]:=
z=Sqrt[(a^2-f^2)*(1-r^2/a^2)]
Out[]=
(-)1-
2
a
2
a
2
e
2
r
2
a
In[]:=
andthisexpressionforzissubstitutedintoFprz:
In[]:=
Frr=AbsReplaceFprz,
(-)1-
->z;2
a
2
a
2
e
2
r
2
a
andintoFpzz
Fzz=ReplaceFpzz,
(-)1-
->z;SimplifiedformofFrr(SeeanswerbyGhoster)2
a
2
a
2
e
2
r
2
a
In[]:=
Fr=3/2*(ArcSin[e]-e*Sqrt[1-e^2])/e^3*M*r/(a^3);
SimplifiedformofFzz(SeeanswerbyGhoster)
In[]:=
Fz=-3*(e-Sqrt[1-e^2]*ArcSin[e])/e^3*M*Sqrt[a^2-r^2]/(a^3);
"Set parameters for a specific oblate sphere:"M=2000;a=20;e=0.999
"Find the resultant force (Ft) of Fr and Fz:"
In[]:=
Ft=Sqrt[Fr^2+Fz^2];
"Find the component (Fc) of the Ft force vector that points at the centre:"
Fc=Abs[FtCos[ArcTan[Fz/Fr]-Pi/2+ArcTan[-r/(Sqrt[(a^2-a^2e^2)*(1-r^2/a^2)])]]];
In[]:=
Plot[{Fr,-Fz,Ft,Fc,z},{r,0,19.999}]
Out[]=
"Find the diagonal distance R from the centre to surface coordinate:"
In[]:=
R=Sqrt[r^2+(a^2-a^2e^2)*(1-r^2/a^2)];
"Find the required tangential velocity u to produce the required centrifugal force assuming F = GMm/R^2"
In[]:=
u=Sqrt[M/R];
"Find the required tangential velocity (v) to produce the required centrifugal force assuming Fc"
In[]:=
v=Sqrt[Fc*R];
In[]:=
Plot[{u,v},{r,0,a}]
Out[]=