Excenter
Excenter
Load Eos
Load Eos
In[]:=
<<EosLoader.m
Eos3.7.2 (June 24,2023) running under Mathematica 13.2.1 for Mac OS X ARM (64-bit) (January 27, 2023) on Fri 23 Jun 2023 16:08:54.
Excenter
Excenter
For any triangle ΔABE, the angle bisectors of the three angles ∡E, π-∡A and π-∡B meet at the same point I.
Point I is called the excenter of ΔEAB.
In[]:=
EosSession["Excenter"];
In[]:=
NewOrigami[8,MarkPoints{"A0","B0","C0","D0"}]
Excenter/Origami: Step 1
Out[]=
In[]:=
NewPoint[{"E"{4,7.2},"A"{3,4},"B"{6.5,4}}]
Excenter/Origami: Step 1
Out[]=
In[]:=
triangle={Red,Thick,Line[{"E","A","B","E"}]};
In[]:=
ShowOrigami[Moretriangle]
Excenter/Origami: Step 1
Out[]=
In[]:=
HO["AE",Mark{{"A0B0","E0"}}]!
Excenter/Origami: Step 3
Out[]=
In[]:=
HO["AE","AB"]
Excenter/Origami: Step 3
Out[]=
,
In[]:=
HO["AE","AB",FoldLine2,Mark{{"A0B0","F"}}]!
Excenter/Origami: Step 5
Out[]=
In[]:=
HO["BE",Mark{{"C0B0","G"}}]!
Excenter/Origami: Step 7
Out[]=
In[]:=
HO["BA","BE"]
Excenter/Origami: Step 7
Out[]=
,
In[]:=
HO["BA","BE",FoldLine1,Mark{{"AF","I"}}]!
Excenter/Origami: Step 9
Out[]=
In[]:=
HO["AE","BE"]
Excenter/Origami: Step 9
Out[]=
,
In[]:=
HO["AE","BE",FoldLine2]!
Excenter/Origami: Step 11
Out[]=
In[]:=
HO["E0E","I",Mark{{"E0E","E1"}}]!
Excenter/Origami: Step 13
Out[]=
In[]:=
HO["EG","I",Mark{{"EG","G1"}}]!
Excenter/Origami: Step 15
Out[]=