WOLFRAM NOTEBOOK

Euler Line

Load Eos

In[]:=
<<EosLoader.m
Eos3.7.2 (June 24,2023) running under Mathematica 13.2.1 for Mac OS X ARM (64-bit) (January 27, 2023) on Fri 23 Jun 2023 15:59:21.

Euler line

Three centers are collinear

For any triangle ΔABE, the circumcenter, the centroid and the orthocenter are collinear.
The line determined by the three points is called Euler line.
In[]:=
EosSession["Euler line"];
In[]:=
NewOrigami[10]
Euler line/Origami: Step 1
Out[]=
In[]:=
NewPoint["E"{7,8}]
Euler line/Origami: Step 1
Out[]=
In[]:=
HO["A","E",Mark{{"AD","F1"},{"AB","F2"}}]!
Euler line/Origami: Step 3
Out[]=
In[]:=
HO["B","E",Mark{{"F1F2","O"}}]!
Euler line/Origami: Step 5
Out[]=
In[]:=
circle={Green,Thickness[0.01],GraphicsCircle["O","OE"]};triangle={Red,Thickness[0.01],Line[{"A","B","E","A"}]};
In[]:=
ShowOrigami[More{triangle,circle}]
Euler line/Origami: Step 5
Out[]=
O is the circumcenter.
In[]:=
HO["BE"]!
Euler line/Origami: Step 7
Out[]=
In[]:=
HO["BE","A",Mark{{"BE","J"}}]!
Euler line/Origami: Step 9
Out[]=
In[]:=
HO["AE"]!
Euler line/Origami: Step 11
Out[]=
In[]:=
HO["AE","B",Mark{{"AJ","H"}}]!
Mark
::dup
:Already marked point(s) H exists on the loation.
Euler line/Origami: Step 13
Out[]=
In[]:=
HO["A","E",Mark{{"AE","K"}}]!
Euler line/Origami: Step 15
Out[]=
In[]:=
HO["B","E",Mark{{"BE","L"}}]!
Euler line/Origami: Step 17
Out[]=
In[]:=
HO["AL"]!
Euler line/Origami: Step 19
Out[]=
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.