Equilateral Triangle
Equilateral Triangle
Tetsuo Ida
Load Eos
Load Eos
In[]:=
<<EosLoader`
Eos3.7.2 (June 24,2023) running under Mathematica 13.2.1 for Mac OS X ARM (64-bit) (January 27, 2023) on Fri 23 Jun 2023 16:06:57.
Equilateral Triangle 1
Equilateral Triangle 1
In[]:=
EosSession["Equilateral Triangle 1"];
Construction
Construction
Proof
Proof
In[]:=
ProofDocFormat["Proof","Subsection",1];
In[]:=
ProofDocFormat["Goal","Subsubsection",1];
In[]:=
Goal[SquaredDistance["A","B"]==SquaredDistance["B","G"]==SquaredDistance["G","A"]];
In[]:=
Prove["Equilateral Triangle",ProofDocTrue]
Proof is successful.
Equilateral Triangle 1/Origami: Step 7
Out[]=
In[]:=
EndSession[];
Equilateral Triangle 2
Equilateral Triangle 2
Construction
Construction
In[]:=
EosSession["Equilateral Triangle 2"];
In[]:=
NewOrigami[]
Equilateral Triangle 2/Origami: Step 1
Out[]=
In[]:=
HO["A","B"]
Equilateral Triangle 2/Origami: Step 2
Out[]=
In[]:=
HO["F","D"]
Equilateral Triangle 2/Origami: Step 3
Out[]=
In[]:=
UnfoldAll[]//Column
Equilateral Triangle 2/Origami: Step 5
Out[]=
In[]:=
HO["D","GH","F",Mark"AD",FoldLine1]
Equilateral Triangle 2/Origami: Step 6
Out[]=
In[]:=
Unfold[]
Equilateral Triangle 2/Origami: Step 7
Out[]=
In[]:=
HO["C","JI","F",Mark"CB",FoldLine2]
Equilateral Triangle 2/Origami: Step 8
Out[]=
In[]:=
Unfold[]
Equilateral Triangle 2/Origami: Step 9
Out[]=
In[]:=
HO["LK",Handle"A"]
Equilateral Triangle 2/Origami: Step 10
Out[]=
Equilateral Triangle 3
Equilateral Triangle 3
This constriction is simplest. I found this recipe in Fushimi’s book (Geometry of Origami, 1979)
Construction
Construction
Equilateral Triangle 4
Equilateral Triangle 4
Construction
Construction