Ceva’s Theorem

Hidekazu Takahashi

Header

In[]:=
<<"EosHeader.m"

Construction

In[]:=
EosSession["Ceva's Theorem"];
In[]:=
NewOrigami[10];
In[]:=
NewPoint["E"{7,10}]
Ceva's Theorem: Step 1
Out[]=
In[]:=
HO["AE",Handle"D"]
Ceva's Theorem: Step 2
Out[]=
In[]:=
Unfold[]
Ceva's Theorem: Step 3
Out[]=
In[]:=
HO["BE",Handle"C"]
Ceva's Theorem: Step 4
Out[]=
In[]:=
Unfold[]
Ceva's Theorem: Step 5
Out[]=
In[]:=
NewPoint["F"{6,3}]
Ceva's Theorem: Step 5
Out[]=
In[]:=
HO["AF",Handle"B",Mark"BE"]
Ceva's Theorem: Step 6
Out[]=
In[]:=
Unfold[]
Ceva's Theorem: Step 7
Out[]=
In[]:=
HO["BF",Handle"A",Mark{"AE"}]
Ceva's Theorem: Step 8
Out[]=
In[]:=
Unfold[]
Ceva's Theorem: Step 9
Out[]=
In[]:=
HO["EF",Handle"B",Mark{"AB"}]!
Ceva's Theorem: Step 11
Out[]=
In[]:=
seg={Thick,Green,Line[{"A","G"}],Line[{"B","H"}],Line[{"E","I"}],Red,Line[{"A","E","B","A"}]};
In[]:=
GraphicsOrigami[Moreseg]
Ceva's Theorem: Step 11
Out[]=

Verification