Example Uses of General Topology Entity Store
Example Uses of General Topology Entity Store
Initialization (compressed form of the entity store):
In[]:=
imstore=
;
In[]:=
myStore=ToExpression[StringJoin[FromCharacterCode[Take[Flatten[Round[ImageData[imstore]65535]],3131285]]]];PrependTo[$EntityStores,myStore];EntityValue["GeneralTopologyTheorem","Activate"]//Activate;EntityValue["GeneralTopologyTheorem","TraditionalFormMakeBoxAssignments"]//Activate;
Obtain lists of properties for theorems and concepts.
In[]:=
EntityValue["GeneralTopologyTheorem","Properties"]
Out[]=
,,,,,,,,,
In[]:=
EntityValue["GeneralTopologyConcept","Properties"]
Out[]=
,,,,,,,,,,
Obtain lists of concepts and theorems.
In[]:=
EntityList@"GeneralTopologyConcept"
Out[]=
In[]:=
EntityList@"GeneralTopologyTheorem"
Out[]=
Calculate the related theorems for a concept.
In[]:=
Entity["GeneralTopologyConcept","QuotientSpace"]["RelatedTheorems"]
Out[]=
,,
View a summary grid for a theorem.
In[]:=
Entity["GeneralTopologyTheorem","ClassicalAscolisTheorem"]["SummaryGrid"]
Out[]=
Theorem | ClassicalAscolisTheorem | ||||
Label | classical Ascoli's Theorem | ||||
AlternateNames | MunkresTheorem45.4 | ||||
QualifyingObjects | F,,n | ||||
Notation |
| ||||
Restrictions |
| ||||
Statement | the family F of maps ⟶( n n Hom Top n X ( n | ||||
References | James Munkres. Topology. pp. 278-279, 2000 | ||||
RelatedConcepts | EuclideanMetric,IsCompact,EuclideanSpace,IsPrecompactSubsetOf,AsTopologicalSubspaceOf,SpaceWithUniformTopology,IsEquicontinuous,IsPointwiseBounded |
Display usage messages for a symbol.
In[]:=
?Mapping
Mapping[X, Y, x ↦ f[x]] represents the function f: X -> Y. |
Mapping[X, x ↦ f[x]] represents the function f: X -> f(X). |
Mapping[SetBuilder[{ x 1 x n x 1 x 1 x n x n |
View expressions in traditional form.
In[]:=
SetBuilder[x^2,x∈Integers]//TraditionalForm
Out[]//TraditionalForm=
{ | x∈ }
2
x
In[]:=
Mapping[Reals,Integers,x↦Floor[x]]//TraditionalForm
Out[]//TraditionalForm=
∋x⌊x⌋∈
In[]:=
~Math["IsTopologicalSubspaceOf"]~//TraditionalForm
Out[]//TraditionalForm=
is a topological subspace of