Angle trisection
Angle trisection
Load Eos
Load Eos
In[]:=
<<EosLoader.wl
Eos3.8.0 (October 13,2024) running under Mathematica 14.1.0 for Mac OS X ARM (64-bit) (July 16, 2024) on Mon 14 Oct 2024 18:34:23.
This version is effective until March 31,2025.
Construction
Construction
In[]:=
EosSession["Angle trisector"];
In[]:=
MarkOff[];
In[]:=
NewOrigami[10]
Angle trisector/Origami: Step 1
Out[]=
In[]:=
ProofDocFormat["Construction","Subsection",1];
In[]:=
NewPoint["E"{7,10}]
Angle trisector/Origami: Step 1
Out[]=
In[]:=
HO["AE",Handle"D"]
Angle trisector/Origami: Step 2
Out[]=
In[]:=
Unfold[]
Angle trisector/Origami: Step 3
Out[]=
In[]:=
HO["A","D",Mark{"AD","BC"}]
Angle trisector/Origami: Step 4
Out[]=
In[]:=
Unfold[]
Angle trisector/Origami: Step 5
Out[]=
In[]:=
HO["A","F",Mark{"AD","BC"}]
Angle trisector/Origami: Step 6
Out[]=
In[]:=
Unfold[]
Angle trisector/Origami: Step 7
Out[]=
In[]:=
HO["F","AE","A","HI"]
Angle trisector/Origami: Step 7
Out[]=
,,
In[]:=
HO[FoldLine3]
Angle trisector/Origami: Step 8
Out[]=
In[]:=
ProjectPoint[{"A","H"}]
Angle trisector/Origami: Step 8
Out[]=
〈J,K〉
In[]:=
Unfold[]
Angle trisector/Origami: Step 9
Out[]=
In[]:=
HO["AJ",Handle"B",MarkFalse]
Angle trisector/Origami: Step 10
Out[]=
In[]:=
Unfold[]
Angle trisector/Origami: Step 11
Out[]=
Verification
Verification