In[]:=
Module[​​{x=RandomReal[{0,10}],y=RandomReal[{0,10}],ζ},​​ζ=x+Iy;​​​​{​​ {"total contour integral",​​ -I2πNIntegrate[zLog[1+z]/(((x-z)^2+y^2)((x+z)^2+y^2)),{z,0,∞}]+2π^2NIntegrate[z/(((x-z)^2+y^2)((x+z)^2+y^2)),{z,1,∞}]-I2πNIntegrate[zLog[z]/(((x-z)^2+y^2)((x+z)^2+y^2)),{z,1,∞}]},​​ {"2π * res sum",​​ (Iπ)/(4xy)(-Log[1-x+Iy](π+Arg[x-Iy]-ILog[Abs[x-Iy]])-Log[1+x-Iy](π+Arg[-x+Iy]-ILog[Abs[x-Iy]])+Log[1+x+Iy](π+Arg[-x-Iy]-ILog[Abs[x+Iy]])+Log[1-x-Iy](π+Arg[x+Iy]-ILog[Abs[x+Iy]]))},​​ {"target integral (isolated from imaginary part of res sum)",​​  NIntegrate[zLog[1+z]/(((x-z)^2+y^2)((x+z)^2+y^2)),{z,0,∞}]},​​{"remainder of imaginary part of res sum",​​  1/(8xy)((ArcTan[1-x,y]-ArcTan[y/(1+x)])Log[x^2+y^2]+πLog[(1+x)^2+y^2]-ArcTan[y/x]Log[((1-x)^2+y^2)((1+x)^2+y^2)])+​​NIntegrate[(zLog[z])/((z^2y^2+(xz-1)^2)(z^2y^2+(xz+1)^2)),{z,0,1}]}​​ }​​​​​​]//Grid
Out[]=
total contour integral
0.503277-0.63842
2π * res sum
0.503277-0.63842
target integral (isolated from imaginary part of res sum)
0.0529313
remainder of imaginary part of res sum
0.0529313