Totalistic k=3

In[]:=
ResourceFunction["InteractiveListSelector"][Table[ArrayPlot[CellularAutomaton[{n,{3,1},1},SeedRandom[24142];RandomInteger[2,200],150],Frame->False,ColorRules->{0->White,1->Blue,2->Red},PixelConstrained1]->n,{n,0,3^7-1,3}]]
Out[]=
​​
{42,42,51,114,195,231,288,306,318,357,384,426,438,555,600,627,705,843,792,963,966,924,1041,1038,1086,1572,1599,1521,1659,1815,2007,2049}
In[]:=
ResourceFunction["InteractiveListSelector"][Table[ArrayPlot[CellularAutomaton[{n,{3,1},1},SeedRandom[24142];RandomInteger[2,200],150],Frame->False,ColorRules->{0->White,1->Blue,2->Red},PixelConstrained1]->n,{n,1,3^7-1,3}]]
Out[]=
​​{148,178,397,964,856,1258,2050}
{42,42,51,114,195,231,288,306,318,357,384,426,438,555,600,627,705,843,792,963,966,924,1041,1038,1086,1572,1599,1521,1659,1815,2007,2049}
In[]:=
ResourceFunction["InteractiveListSelector"][Labeled[ArrayPlot[CellularAutomaton[{#,{3,1},1},SeedRandom[24143];RandomInteger[2,600],300],Frame->False,ColorRules->{0->White,1->Blue,2->Red},PixelConstrained1],#]->#&/@{42,42,51,114,195,231,288,306,318,357,384,426,438,555,600,627,705,843,792,963,966,924,1041,1038,1086,1572,1599,1521,1659,1815,2007,2049,148,178,397,964,856,1258,2050}]
Out[]=

42
Add
,
42
Add
,
51
Add
,
114
Add
,
195
Add
,
231
Add
,
288
Add
,
306
Add
,
318
Add
,
357
Add
,
384
Add
,
426
Add
,
438
Add
,
555
Add
,
600
Add
,
627
Add
,
705
Add
,
843
Add
,
792
Add
,
963
Add
,
966
Add
,
924
Add
,
1041
Add
,
1038
Add
,
1086
Add
,
1572
Add
,
1599
Add
,
1521
Add
,
1659
Add
,
1815
Add
,
2007
Add
,
2049
Add
,
148
Add
,
178
Add
,
397
Add
,
964
Add
,
856
Add
,
1258
Add
,
2050
Add

Clear
Copy