Insert New
Slide
​
Roboto
A
Slide Break Defaults…
​
Cell Actions
Window Options
Start Presentation
▼

Slide
1
of
9
​
​

Conferência Virtual Brasileira de Tecnologia Wolfram 2021
​
Workshop
Daniel Carvalho


Slide
2
of
9
​
​

Histórico


  • 2013 - Mackenzie - SP - Mathematica Users Meeting
  • 
  • 2014 - Mackenzie - SP - Mathematica Users Meeting
  • 
  • 2015 - Mackenzie - SP - Mathematica Users Meeting
  • 
  • 2016 - Mackenzie - SP - https://www.wolfram.com/events/technology-conference-br/2016/
  • 
  • 2017 - Cubo Network - Itaú - https://www.wolfram.com/events/technology-conference-br/2017/
  • 
  • 2018 - Mackenzie - SP - https://www.wolfram.com/events/technology-conference-br/2018/
  • 
  • 2019 - Mackenzie - SP - https://www.wolfram.com/events/technology-conference-br/2019/
  • 
  • 2020 - Virtual - https://www.wolfram.com/events/virtual-conference-br/2020/
  • 
  • 2021 - Virtual - https://www.wolfram.com/events/virtual-conference-br/2021/
  • 
    Slide
    3
    of
    9
    ​
    ​

    Reconhecimento

    2021 - Wolfram Innovator Awards - TechCon, UFRJ, UFES
    https://blog.wolfram.com/2021/10/15/celebrating-computational-excellence-with-the-2021-wolfram-innovator-awards/
    2020 - Wolfram Innovator Awards - Mackenzie
    https://www.wolfram.com/events/technology-conference/innovator-award/
    
    Slide
    4
    of
    9
    ​
    ​

    Wolfram Language: Computação Simbólica e Numérica

    Mathematica & Wolfram Language continuam sendo líderes em computação simbólica (Cálculo) e numérica
    Derivada:
    In[]:=
    D[Sin[xy]/(x^2+y^2),x,y]​​TraditionalForm[%]
    Out[]=
    -
    2
    2
    x
    Cos[xy]
    2
    (
    2
    x
    +
    2
    y
    )
    -
    2
    2
    y
    Cos[xy]
    2
    (
    2
    x
    +
    2
    y
    )
    +
    Cos[xy]
    2
    x
    +
    2
    y
    +
    8xySin[xy]
    3
    (
    2
    x
    +
    2
    y
    )
    -
    xySin[xy]
    2
    x
    +
    2
    y
    Out[]//TraditionalForm=
    -
    xysin(xy)
    2
    x
    +
    2
    y
    +
    8xysin(xy)
    3
    (
    2
    x
    +
    2
    y
    )
    -
    2
    2
    x
    cos(xy)
    2
    (
    2
    x
    +
    2
    y
    )
    +
    cos(xy)
    2
    x
    +
    2
    y
    -
    2
    2
    y
    cos(xy)
    2
    (
    2
    x
    +
    2
    y
    )
    Computaćão simbólica, kernel sombólico:
    In[]:=
    1/2+4/5
    Out[]=
    13
    10
    In[]:=
    1/2+3/5*1/x
    Out[]=
    1
    2
    +
    3
    5x
    Tabela de derivadas:
    In[]:=
    makeDerivativeTable[funs_List,x_]:=Grid[Prepend[Transpose[{funs,D[funs,x]}],Style[#,FontWeightBold]&/@{HoldForm[f[x]],HoldForm[f'[x]]}],
    Grid options
    ]//TraditionalForm​​makeDerivativeTable[{c,x,x^n,a^x,E^x,Log[a,x]},x]
    Out[]//TraditionalForm=
    f(x)
    ′
    f
    (x)
    c
    0
    x
    1
    n
    x
    n
    n-1
    x
    x
    a
    x
    a
    log(a)
    x
    
    x
    
    log(x)
    log(a)
    1
    xlog(a)
    Integral:
    Integral numérica:
    Visualização:
    Computação numérica em outras linguagens - float:
    
  • Julia
  • 
  • Java
  • 
  • NodeJS (JavaScript)
  • 
  • Python
  • In[]:=
    $ julia
    _
    _ _ _ (_) _ | Documentation : https : // docs . julialang . org
    (_) | (_) (_) |
    _ _ _ | | _ __ _ | Type "?" for help, "]?" for Pkg help .
    | | | | | | | / _` | |
    | | | _ | | | | (_ | | | Version 1.6 .3 (2021 - 09 - 23)
    _/ | \_ _' _ | _ | _ | \_ _' _ | | Official https : // julialang . org/ release
    | __/ |

    julia > .1 + .2
    0.30000000000000004
    ​
    julia > exit ()
    $ jshell
    | Welcome to JShell -- Version 11.0 .9
    | For an introduction type : /help intro
    ​
    jshell > .1 + .2
    $1 == > 0.30000000000000004
    ​
    jshell > /exit
    | Goodbye
    $ node
    Welcome to Node . js v14 .16 .0 .
    Type ". help" for more information .
    > .1 + .2
    0.30000000000000004
    >
    (To exit, press Ctrl + C again or Ctrl + D or type . exit)
    >
    $ python
    Python 3.6 .13 | Anaconda, Inc . | (default, Feb 23 2021, 21 : 15 : 04)
    [GCC 7.3 .0] on linux
    Type "help", "copyright", "credits" or "license" for more information .
    >>> .1 + .2
    0.30000000000000004
    >>> exit ()
    $
    Computação numérica em Wolfram Language:
    
    Slide
    5
    of
    9
    ​
    ​

    Wolfram Data Framework

    ​
    Dados computáveis, acurados e consistentes em diferentes domínios
    ​
    Multiparadigm Data Science process
    Gartner: Tech Providers 2025: Why Small Data Is the Future of AI
    https://www.gartner.com/en/documents/3990260/tech-providers-2025-why-small-data-is-the-future-of-ai
    https://www.wolfram.com/wolfram-u/catalog/dat103/
    https://blog.wolfram.com/2021/10/19/microsoft-wolfram-and-the-future-of-computable-data/
    
    Slide
    6
    of
    9
    ​
    ​

    Wolfram Language

    Basics

    
  • Programação funcional
  • 
  • Funções anônimas
  • 
  • Map & Apply
  • 
  • Manipulação de listas
  • www.wolframcloud.com
    An Elementary Introduction to the Wolfram Language
    ​https://www.wolfram.com/language/elementary-introduction/2nd-ed/​
    ​
    Wolfram Language Tutorial: Fast Introduction for Programmers
    ​https://www.wolfram.com/language/fast-introduction-for-programmers/en/​
    ​
    Wolfram U - Certificados, Certificacao
    ​https://www.wolfram.com/wolfram-u/​
    ​
    Functional Programming
    ​https://reference.wolfram.com/language/guide/FunctionalProgramming.html​
    ​
    List Manipulation
    ​https://reference.wolfram.com/language/guide/ListManipulation.html​
    ​
    Daily Study Groups
    ​https://www.wolfram.com/wolfram-u/special-event/study-groups/
    
    Slide
    7
    of
    9
    ​
    ​

    Ciências dos Dados e Aprendizagem de Máquina

    Dados do Twitter (e outras mídias sociais)

    
    Slide
    8
    of
    9
    ​
    ​

    Processamento de Imagens e Aprendizagem de Máquina

    Docentes do Mackenzie: Programa de Pós-Graduação em Engenharia Elétrica e Computação

    
    Slide
    9
    of
    9
    ​
    ​

    Wolfram|Alpha Notebook Edition

    Para obter soluções de equações e cálculo passo-a-passo, e realizar computação usando linguagem natural em inglês (NLP) no Mathematica, crie um notebook, menu:
    ​
    ​File, New, Wolfram|Alpha-Mode Notebook...
    ​
    https://www.wolfram.com/wolfram-alpha-notebook-edition/