A Convergent Sequence Satisfies the Cauchy Criterion
A Convergent Sequence Satisfies the Cauchy Criterion
This Demonstration shows that a convergent sequence satisfies the Cauchy criterion. Suppose . For each , there exists , such that for all , . If , then .
a=
lim
n∞
a
n
ϵ>0
M∈
n>M
|a-|<ϵ/2
a
n
i,j>M
-=a-+-a≤a-+-a<ϵ
a
j
a
i
a
i
a
j
a
i
a
j