In[]:=
(*Utilidadparamostrarderivadasenformacompacta*)derivs[f_,vars_List]:=Row@Riffle[TraditionalForm/@(HoldForm[D[f,#]]&/@vars),", "];(*Encabezadoprincipal*)Style["21–26 Use la regla de la cadena para calcular las derivadas parciales que se indican.",Bold,15](*Listadeejerciciosconestructura*)Grid[{{"21.",Column[{Row[{TraditionalForm[z==x^4+x^2y],"; ",TraditionalForm[x==s+2t-u],"; ",TraditionalForm[y==stu^2]}],Row[{" ",derivs[z,{s,t,u}]}],Row[{" ",Style["donde ",Italic],TraditionalForm/@{s==4,t==2,u==1}//Row}]}]},{"22.",Column[{Row[{TraditionalForm[T==v/(2u+v)],"; ",TraditionalForm[u==pqSqrt[r]],"; ",TraditionalForm[v==pSqrt[qr]]}],Row[{" ",derivs[T,{p,q,r}]}],Row[{" ",Style["donde ",Italic],TraditionalForm/@{p==2,q==1,r==4}//Row}]}]},{"23.",Column[{Row[{TraditionalForm[w==xy+yz+zx],"; ",TraditionalForm[x==rCos[θ]],"; ",TraditionalForm[y==rSin[θ]],"; ",TraditionalForm[z==rθ]}],Row[{" ",derivs[w,{r,θ}]}],Row[{" ",Style["donde ",Italic],TraditionalForm/@{r==2,θ==π/2}//Row}]}]},{"24.",Column[{Row[{TraditionalForm[P==Sqrt[u^2+v^2+w^2]],"; ",TraditionalForm[u==xE^y],"; ",TraditionalForm[v==yE^x],"; ",TraditionalForm[w==E^(xy)]}],Row[{" ",derivs[P,{x,y}]}],Row[{" ",Style["donde ",Italic],TraditionalForm/@{x==0,y==2}//Row}]}]},{"25.",Column[{Row[{TraditionalForm[N==(p+q)/(p+r)],"; ",TraditionalForm[p==u+vw],"; ",TraditionalForm[q==v+uw],"; ",TraditionalForm[r==w+uw]}],Row[{" ",derivs[N,{u,v,w}]}],Row[{" ",Style["donde ",Italic],TraditionalForm/@{u==2,v==3,w==4}//Row}]}]},{"26.",Column[{Row[{TraditionalForm[u==xE^y],"; ",TraditionalForm[x==α^2β],"; ",TraditionalForm[y==β^2γ],"; ",TraditionalForm[t==γ^2α]}],Row[{" ",derivs[u,{α,β,γ}]}],Row[{" ",Style["donde ",Italic],TraditionalForm/@{α==-1,β==2,γ==1}//Row}]}]}},Alignment->{{Left,Left}},Spacings->{2,1},Frame->None]
Out[]=
21–26 Use la regla de la cadena para calcular las derivadas parciales que se indican.
Out[]=
21. |
| |||
22. |
| |||
23. |
| |||
24. |
| |||
25. |
| |||
26. |
|
In[]:=
(*Definicióndelasvariables*)ClearAll[z,x,y,s,t,u]x[s_,t_,u_]:=s+2t-uy[s_,t_,u_]:=stu^2z[s_,t_,u_]:=x[s,t,u]^4+x[s,t,u]^2*y[s,t,u](*Derivadasparciales*)dzds=D[z[s,t,u],s];dzdt=D[z[s,t,u],t];dzdu=D[z[s,t,u],u];(*Mostrarlasderivadas*)dzdsdzdtdzdu(*Evaluaciónenelpuntodado:s=4,t=2,u=1*)dzds/.{s->4,t->2,u->1}dzdt/.{s->4,t->2,u->1}dzdu/.{s->4,t->2,u->1}
Out[]=
4+2st(s+2t-u)+t
3
(s+2t-u)
2
u
2
(s+2t-u)
2
u
Out[]=
8+4st(s+2t-u)+s
3
(s+2t-u)
2
u
2
(s+2t-u)
2
u
Out[]=
-4+2stu-2st(s+2t-u)
3
(s+2t-u)
2
(s+2t-u)
2
u
Out[]=
1582
Out[]=
3164
Out[]=
-700
In[]:=
(*Definicióndelasvariables*)ClearAll[T,u,v,p,q,r];u[p_,q_,r_]:=p*q*Sqrt[r];v[p_,q_,r_]:=p*Sqrt[q]r;T[p_,q_,r_]:=v[p,q,r]/(2*u[p,q,r]+v[p,q,r]);(*Derivadasparciales(puedesdejarD[...]osimplificar)*)dTdp=D[T[p,q,r],p];dTdq=D[T[p,q,r],q];dTdr=D[T[p,q,r],r];(*Mostrarderivadassimbólicas*)dTdpdTdqdTdr(*Evaluaciónenelpuntodado:p=2,q=1,r=4*)pt={p->2,q->1,r->4};Print["El valor de ∂T/∂p en (2,1,4) es: ",dTdp/.pt];Print["El valor de ∂T/∂q en (2,1,4) es: ",dTdq/.pt];Print["El valor de ∂T/∂r en (2,1,4) es: ",dTdr/.pt];
Out[]=
-+
p
q
r2qr
+q
r2
2pq
r
+pq
rq
r2pq
r
+pq
rOut[]=
-+
p
q
r2pr
+pr
2
q
2
2pq
r
+pq
rpr
2
q
2pqr
+pq
rOut[]=
-+
pr
q
pq
+pq
r
2
2pq
r
+pq
rp
q
2pq
r
+pq
rEl valor de ∂T/∂p en (2,1,4) es: 0
El valor de ∂T/∂q en (2,1,4) es: -
1
8
El valor de ∂T/∂r en (2,1,4) es:
1
32