The Complex Unit Circle

​
α/β parametrization range
4D rotation angles:
φ
x,y
φ
x,u
φ
x,v
φ
y,u
φ
y,v
φ
u,v
The points
{z,w}∈
2

of the complex unit circle
2
z
+
2
w
=1
can be parametrized:
z=x+iy=cos(α)cosh(β)-isin(α)sinh(β)
,
w=u+iv=sin(α)cosh(β)+icos(α)sinh(β)
.
This Demonstration shows 3D projections of the surface
2
z
+
2
w
=1
in
x,y,u,v
space. The angles
φ
a,b
denote the rotation angles inside the
a,b
hyperplane. In the limit, as
β0
, the complex unit circle becomes a circle in the
x,u
plane.

Details

​
For a detailed discussion of the complex unit circle, see
R. Hammack, "A Geometric View of Complex Trigonometric Functions," College Mathematics Journal, 38(3), 2007 pp. 210-217.

External Links

The Mathematica GuideBook for Graphics

Permanent Citation

Michael Trott, Michael Trott
​
​"The Complex Unit Circle"​
​http://demonstrations.wolfram.com/TheComplexUnitCircle/​
​Wolfram Demonstrations Project​
​Published: June 13, 2007