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Gerd Mitschke

§0 Imtroduction
In this paper we consider various systems of i::::~:|:|]:ninatﬂ\rj,;r
Logic and A - Calculus augmented by certain "discriminator
rules”. We will mainly be concerned with consistency
and definability problems, but we study also some properties
of the resulting reductions.
A discriminator axiom is a reduction axiom of the form

Kif (X,Y)ER
(d) Sxx—-

KI 1f (X, ¥) 4R
where 8 is a new constant added to the system considered
and R is a binary relation on a specified subset V of the
sat of all terms of that system. In Combinatory Logic K
and KI have the usual meaning, in the P-caleculus K is Dalyx
and KI isAx)yy. We will give conditions for V and R which
imply the Church-Rosser-theorem for the extended system.

We shall make use of the context notation. A context will

be a term with one or more holes in it, to be precise

0.1 Definition: The empty context [ ] is a context, if C is a

context and M is a term or a context, then CM, MC and j\xC

are contexts.




This definition works for W —Calculus and Combinatory Logic.
'h context will be denoted by C=cCI, , , Jwhare the spaces
between the commas indicate the holes in the order in which
they appear in C. E[H.I,...,Hn] means that M,,...,M are
substituted for the holes in C.

All other notation is standard. We usa [M/x]H for "M substi-

tuted for x in H".

+ always denctes a ohe-step raductien
and we use subscripts to indicate the system in which we
work, e.g. Ty is f-reduction defined by c[n_]—ﬂ-a-c[R'_]
where R is @ [5-redex, C any context and R' the coatractum
of R. Furtherm;:-re —=» denotes the reflexive and transitive
closure of —— . The equality given by —» .[E.quivﬂl&n-ﬂﬂ
relation generated by —— ) is denoted by = with the same
subscripts as ——> . %0 denotes the usual A-Calculus based
on axiom (3}, CL is Combinatory Logic based on I,K,S as
primitive combinators. Additiomal axioms te A or CL:are
e.g. indicated by 11’5+{§}. We sometimes write 2l M = N,
ﬁ{ﬁi‘ﬂ—rﬂ for M § N, M—5>N and similarly for all other
theorieg.= denotes identity of terms, M € N for \—-terms
means that M and N only differ in their bound wvariables.
Throughout this paper we avoid mentioning changes of bound
variables. All other notions and notations are standard and
can be found in Curry - Feys [ 4 | or in Bnr‘enﬂr:gt[‘ll -
The first example for a discriminator axiom occurs in Church(3 .
there it is proved that the axiom

Kif n&y

E'gch]' Emi—-r{ for constant mormal forms M, N
KI if M ¥ N

can consistently be added to AP .

LB



Hers constant term means term without fzree variables (without
variables in CL). The same result holds for CL with = I:plaéﬁd
by=. We will derive this result as a corollary to a more
general theorem later. The restrictions onm M, N in [d]:hl

seem to be guite natural, and indeed some rastrictions are

necessary as is shown in the first lemma.

0.2 Lempa: CL and 3*plus the unrestricted discriminator
axiom

ir. if M=y
{d") SMN-— '
(k1 if min
are inconsistent.

Proof: LetY in both systems denote the well known paradoxical

combinater of Curry and let P =Y (4(%¥I)). Then by the Fixed

point property of Y we have -
K if F=KI

CL (Af) - F = O(KI)E— '
KI if FfKI

In the first case we have CL(Mp) - K=KI from which we deduce
the inconsistency CL(W\[})| x=Exy=Kixy=y. The second case is

pbviously contradictory. =

This proof only uses the incompatibilility of a fixed point
pperator and a discriminator. In general F does not have
a normal form, s0 one might try to restrict the discriminator

to normal forms; i.e. consider the axiom

K if M=N (MZNH)
") Jmi— for normal forms M,N
KI if MEN (MEN)
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In 'J."?:+[J"} we immediately cet the inconsistency

KT +— (Pacfy (XT) ) KRe— (AxAy (Sxy) ) KK —EK—3 XK,
CL+({§") is consistent as the reader may easily verify using
the methods of §1. The reason for this is that in CL the s
variables behave like constantd or free variables. However
we loose the substitution property
X =Y =M/x]X— MY
because
[K/x][R/y1{dxy)=JKK —K and
[K/x1[K/yl {KI})=KI but not K— KI,

We finally mention the following undefinability result.

0.2 Theorm: Church's 4 is not definable in the A—Calculus,
i,e. there is no \\-termd satisfying [ém]. ]

This rasult was proved independently by Barendregt and
Wadsworth, see Barendregt et al. [2 ] or Hindley- Mitschkel[s |

for a proof.



§1 Consistency results

Now we dewelop conditions for d-axioms which are sufficient
for their consistency with '}-F’, CL and some other synéem_n.

To be more precise: We give conditions for a & -axiom (d)

from which one can derive the Church-Rosser-theorem for
'}-‘3‘*{5]; CL+(5) etc.. For this purpose a lemma discoverd
independently by R. Hindley and B. Rosen will be of great help.
The Church-Rosser-theorem for a reduction means that —=

satisfies the property

(CR) If M —%y n| and :1-—"'!‘-:-1-:2 then there exists an N, such

s
that N, —*» N, and ﬂzu—'t—-bHE.

For this we often draw the well known diagram o

H‘/H \H

1.1 Lemma: (Hindley[S5 ,Thm 81, R_nnEuEE.Ti'm 3.5,3.6]7 )
Lat = and ——% ba two reduction relatioms on the same

set of terms both satisfving (CR}). Then —3 = —k 3,

has (CR} if —-—i-,la.nﬂ ot satisfy

{Com) Whenevar M —% N and M —, L then there exists a

Emch-l:h:i:!l—*"—s-zﬂmdl.—zl % or LzZ (1dz),




The abbraviation (Com) indicates that this condition implies

that —=, and ———3, commuta in the sense of the diagram

M
'\'/\*
1 2
i L
\ -
b i

L
2% ¥4
A

The proof for this fact is in Euaan{? , lemma 3.6 ] .
For the rest of this paper we restrict ourselves to the
“\ =Calculus, but it is easy to verify that most of the

results carry over to Combinatory Logic.

now lat Tg be the set of all A-terms constructed from vnri‘ahiaa—

and one additional constantd , VTS be a set of closed

teyms and R=VxV a binary relation on V.

1.2 Dafinition: (i) Tha‘rreductinn T agsotiated with
(v,R) iz defined by the axiom

K if (M NIER

KI if (M,N)E VY=V =R

(& (v,m)) Smn T‘"{

{1i) The pair (V,R) is o-stable iff the following three

conditions are satiefied (with = -z -—?—51

451) If MEV and "ﬁ’“' then M'E V,

(52) If LH;H}ER,H-;.!&—*H' and n—ﬁ—r H' then (M',N'}é&H



L = ¥ ]
(s3) If (M,N)eV=V-R , M M' and H——r—!%—*li than

(M ,N')EVXV - R .

The notions of rédex, residual etc. are extended to
5’\[3 "'-["-?W,R}:' in the usual way, but note that &SMN is not
a redex 1if MEV or NeEV.

The most prominent example for a d-stable pair is given
byt V = the set of all closed normal forms, R =5 .,

The d-reduction associated with this pair is just Church'
d-reduction, In the sequel let (V,R)} be a fixed J-stable

paiz. I'.Ining- the Hindley-Rosen-lemma we will show that 7;7—5
has the Church-Rossar-property.

1.3 Lemma: T_) satisfiea (CR).
Proof: (CR) for a reduction ———% says that — comnmutes

with itself. Therefore we show (Com) with S —-—--l-z

= -—d.—!- s Lt HT')H, uTrL and recall that this

means that M contains two redexes R‘Ii' RE and contracting

R1 gives N, contracting Rz gives L., We prove {(Com) by con-
sidering the various possibilities for the relative positions
of R1 and [Lz in M. Let R,i, Ri be the contracta of F"Ii' RZ'
case 1. R, and R, are disjoint, tow uec[ni,azj, consider

1
the diagram

M= ClR,,R,]
wz c[R,R,] cfry,R;'I=L

Sk

azc[nji ,n;_',}
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case 2, R.lin containad in th Without loss of generality
we asgume that R,Z J'E[R,i]x and K=c'[R,]. The proof can 3
be tsken from the diagram

m=c'[dor,Ix]

v ™~

n=cfdcrilx] c'[ry] =L

z=c'[n} ]
z=c'[R;] because the condition of J-stability mskes sure

that Jc[RJI% and JCIRI]% have tha same contractum.

Casa 3. Rz is contained in R‘l' This case isg dual to caee 2.

Ho other cases are popsibla. =
How we are able to prove

1.4 Theorem: T‘q—b has the Church-Rossar-propexrty and
therefore & is conmpistant.

Proof: We check condition ({om) now for o and —5 7 -

Let M —r_,'—q-‘ﬂ by contraction of the [2-redex Q and Q' be the
contractum of Q. The d-redex o AB contracted in M to obtain

L is (without loss of generality) assumed to have contractum XK.

Case 1. JAB and Q are disjoint. We have the situnation

M= cldaz,0l
| LN
w=cidas, 0] c[x.Ql=z 8
N .
z=cx,0"'] :

Casa 2. O 4ia in J&aB, say in A. Cm.li.ﬂlr—




M= cfde'fals] ‘

£

N=CLéC'IQIR] cfx] =L
N
c[Kl=z

In this case the J-stability of (V,%) is used to assure
that SC'[QJBE and £C'[Q']JB have the same contractum K.

Case 3. SAB is in 0, here we have the following two possi-

bilities
a) M=z c'[{Axclidanl)y]
b) M= C'[ (AxYic[fas] ]

subcase a) is treated in the diagram

M= c'[ (dxcldan])x]

o Ty

H= c'[[y/x]c[dan] c'lxcixh=1 -y .
g=c{ly/x]c(xl]

Her we can conclude ¥ —s—>3I only becauss A and B are
closed and therefore left unchanged in the reduction H—F&H.
subcase b) is solved in

M=C'[ (AxY)Cc[dan]]

e TE

N=c'[ [cldns]/x]¥] c'[L(x¥)c[Kk] =1L
N, _F

z=c'fclx])/x]¥]

Here we can conclude only 'ﬂj‘f—b 2 because C[JAB] can be

substituted for several free occurrences of % in ¥ 4n the
reduction M —p > N« S0 we actually used the full streangth
of the Hindley-Rosen-lemma.

No other cases are possible.




Some ramarks have to be made at this polnt

Remark 1. Theorem 1.4 respectively its analogue can still

be proved 1f welim:lude the extensionality axiom l'.lll. one

hasz only to reformulate the definition of :f-stahle, in -
: - - ) —

1.2{ii) ona has to replace W by '!—'15!- W py

The extra cases to0 be considered in the extended proof

are trivial.

Remark 2. In the proof of 1.3 and 1.4 not only (Com) was
proved but also what Curry calls 'at.x'unghpmpert:,' {B}.
{Curry-Feya [ 4 ,§4B,C]) which inturn is & key to many
other nice properties, e.g. Curry's property (E), sometimes
also called (F0’). For o the strong property (D) is
the statement: -

Iet M contain two redexes R‘l and RE' M -ﬂ_-:rlﬂ by contracting

Rir M 7 1L by contracting R,, Then there is a I such .
that N T:'_h £ by a devalopment of all residuals of R: J

in N, L—%»2 by a developmant of all residuals of R, ia L.

d" i
Moreover jftnr both reductions the residuals of all other
redexes in M are the same in I,
AE property (D) iE tria for --‘i--vr wa only have to check
tha cases where R1, RE are d~redexes or one is a f}-zndux
and the other one a d-redex, this is just done in the proofs
of 1.2 and 1.4 plus the observaticon that the residuals of
tha redexes in M are always the same in IZ.
Finally we mention some examples for J-stable pairs (V,R).
Example 1. V = the set of all closed head normal forms,
R = the similarity relation between head normal forms. 1
For definitions see Wadsworth[i0] or Barendregt [ 1] .
Example 2. V = all closed tezms in which & does mot occur,

R = geparability of closed terms, i.e.
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(M, M) ER Lff IX,, ..., % (MX,...X K A nx1...xk—a§—}m: )

S
The restriction on V is necessary: J4EK and K are not
saparable and as K is not separable from itself we would
have the unwanted reductions

S(JRRIE ——=KI and

Ey
J(IKRIK Tﬂnnx?x 5

in my Habilitationsschrift I asked wether (CR) for wp+ [a:fw R}]
implies the J-stability of (V,R). Jan Willem Klop from

Utrecht provided the following answer to that problem.

1.5 Theoram: (i} If V is closed under -—L-a- [loe. (51) ia

'f-ra.l.id )}y then (CR) for _W implies thn !f-itﬂ.hilltjl of (V,R).

{ii) {(CR) for ﬁlﬁﬂé ) does not imply (51).

{V,R) :
Proof: {i} Guppose that (S2) or (S3) is false, say (52).
Then there exist M,Ne€V and HM', N' such that M -ﬁ—}rﬂ‘,
N> 8", (M,N) €R but (M',N’) 4R, Now consider the
reductions .
H_"H1‘—'+Ez-'!llj —ﬁ\ullﬂli

As [M',N") ¢n we must find a number r =.t. {Hr,uri €R

and iHI.Hﬂ_.E:' {ER s Or symmetrically. Now for M_. W_, Hr+1

we have the reductions

N,




- 13 =

§2 Discriminators and unsolvables

In !'#.Fr and ‘}.I'?:—-I-{.L] the closed head normal forms are exactly

the closed solvable terms. Thus for every closed haad

normal form ¥ wa find terms Xire+eeX, such that

M;.s.X, —5—> N, where N 1is a normal form .Eﬂaﬂmrl:hflﬂj}.

When d-reductions are present we have to dafina

Z2.,1 Definition: A closed term M iz solvable iff there

exizt terms .1':1 P .."lk such that H:{i i 'K}r. T’*? N where
N is a normal form. An arbitrary term X with free variables
KyeunesK is called solvable if ite closure flu.:w.1 ¥ ..‘l:ul{

is solvable.

in ’.}.F: we can replaca N in this definition by XK, this w.illl
fail in general for ‘1{3+ [a:fwrml , because we can have very
strange d—stable pairs (V,R).

In Af+(n) one can consistently idm:t.ify all unsclvable
terms (see e.g. Wadsworth[i0] or Barendregt et al.[2Z ] }.
Longo f_‘.?]' asks wether this remains true inﬁppiu: a die-
criminator on normal forms. In this paragraph a positive
answar to this guestion is giwven.

We need the following facts about unsolvable terms

1. If U is unsolvable, then also AxU and UM for any M,

2. If U'is unsolvable, then also [M/x]U for any x and M,
because otherwise (AxU}JM would be solvabla and therefore
AxD. I




TR T

e e

But this contradicts the Church-Rosser-theorem, because
K and EI have no common E{;—y-r«e&unt.
(ii) Take a d-stable pair (V,R} and choose an AEV s.t. .
" B T L1 L]
Now consider (V',R') = (V - fa},R—(v-fa]s®). (v',r")
is no longer d-stable. We note that every reduction in
?'EE*":JW,R]} can be made into one in ?'.r:-l-{o’” ',R'].“ The
only contractions in ?«Fdr{é'er}} not allowed in J}‘-ﬂ*tcﬁv',l{']}'
are of the form
&hKB —3 K } SBA —3 X
SAB — KI  ; dBA — KI
But e.g. tha first one can be replaced by the raduction
SAB 5 A"R g K and similarly for the other ones.

AB evVEry J{U.’R.j-reductiuu is alEo a 5{?,3]"r'du=tim{.

iy
]

wa can esasily dexrive (CR) for AL *le (v H'E}'
=




In the rest of this paragraph & is the discriminator on
closad FJJ’LJ—IIMJ. £nrms.ﬂ E'hxi{xxﬁhx{xx] is the wall
known "standard™ unsolvable term. ..ﬂ'.-reductj.nn is then =z

defined by the axiom

IQ] 1] T ﬂ for any unsolvable term U.

%a will prove tha Church-Rosser-theorem for
e | —
-—M r A U= uj-,t:-) .
Unfortunately a direct argument via the Hindley—Rosen-

lemma does not work because ——% and ———> do not com-

2 [
mute. A countarexample is
(AxU)B
P o
g"?vl" .J?,Hh -
[B/x]U N7k !

where 0 is ungsolvable. The only possible reductions to

£i11 the diagram are [B/x]U ——252 and M8 —r—+JL, but
this last contraction should be a (i-step toc make ocom-
mutativity work. To overcome this difficulty in the H-
case Barendregt et al, [2] introduced an auxiliary reduction
—5r> definad by the axiom ' X

(") clvl — c[3], if 0 is a maximal unsolvable

subterm.of Ef_ﬂ] s i1.e. no other subtarm of c[o] containing -
U is unsoclvabla.
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The Church-Rosser-theorem is then proved for E’?d Tﬂ-r}-

= wvia a labelling and underlining techniigque. I shall
H g g fIﬂ

glire a2 morea direct proof of (CR) for M—Tﬂy F"' ._Ji"."

which in my opinion makes better visible the interactions
batween the different reductions inwvolved. The result wilil
be extended to include 1—Iﬂdunt.1una-

The Hindley-Rosen-lemma also fails for p.—*;!- and F .

Certainly 5 and TRT# commute because a d-redex and
an unsclvable subterm must be disjoint or the d-redex is

contained in the 7'-redex. But the diagram

xR (xuU) 152,

A

EI {30} 2 x{KI{xS2))

rd
Koo,
_m 1

R

RIjz

with unsolvable U =shows that T and F do not com-

mte .

L

2.1 Lomna: —_——!.L,—} has the Church-Rosser-property.
Froof: Clear, since two different f[}'-redexes must be disjoint.
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2.8 Lemma: Let M -_-5;:—1- N, then any ﬁ:— or d-redex has at

most one residual in N.
Proof: This is obvious for —— and thus for ——> .

i T, e &
2.4 Lemma: (Postponement of fl'-contractions)

Lat M aﬁ-) N, then there sxist L and 5 soch that M —=> L

Zé
L 3
L 'ﬁlﬂ and N TE. ]

o
]

Proof: BY indoction on M »H. First consider MFH'—H;’ H

psR ad
et U ba the l'-redex in M and R the redex in N',

Casa 1. B im n{.r-rﬂdn:,

Take ZE=MN and use tha fact that —dr—l and Tn&mute.
Casa 2, R=({AxA)B is a P-rl!det. We look at the possibilitias
for the relative positions of R and the contractum

of U in M, -

2a) R =and M are disjoint; trivial.

2b} R= R ,trivial because M'= N .

2¢) M'=c'[(Axc LR]B .

Now M= C'[(xCc[ul)B , wa take L = C'[[B/xJc[id .

Next we look at the residvals of JL in N andof ©U 4in L
They are contained in maximal unsolvable subterms of W resp.
L, contracting these té ! reduces N and L to the same
term 2.

2d) M'= C'[(AxA)cCART . Take Ls=c'[Lclul/x]r , loock at

the residuals of U resp.J]l in L resp. ¥ and proceed
like in 2c).

These are all possibla casas.

The induction step is easyy use 2,2, 2.3 and tha fact that

in the case above M ryeduces to L in at most one step.

=



In the last two cases of the preceeding proof N and L
only differ in t.he.ir maximal unsolvable subterma and this
was also the case for XKI(R2U) and EKI(SLLY) in the
counterexample to the Hindley-Rosen-lemma. This observation

leads to the following definitiom.

2.5 Defipition: Mo~ M,

CL #.+ss ] such that M =C[0,..., 00, M= €[v,,...,v 1]

iff there axists a context

and U,se..,0,  are exactly the maximal unsolvable subterms

k

of Mer Ve <V are exactly the maximal unsolvable

subterms of HE

Coviously ~ is an egquivalenca ralation.Horeover H #H'

impligs M ~~M*,

2.6 Iﬂmnl—‘P—*ri and T commate modulo ~ , 1.\,

whenever M F}” and M ~Fr> L then there exist 2, 02,
£
such that ﬁ——ﬁ,—-ﬁ Zyr L F_"'} 3, and I, ~I,.
In a diagram
H“'ﬁ-‘{"
N ‘5 . L
.Q_Nl\"i P’PJ’
by iy
Proof: We proceed by induction on the lengths of the
4
reductions M —%>N and M T']:'_}I"
Case 1. M "'"Ii";.-i"ﬂ r M ?l-‘-:'l" let R= (AxA)B be the (-redex,

U the {7 "=redex in M which are contracted.
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ia) R and u &re disjoint in u e trivial,

2} R is containea in U U=c[R]. The residual of U

in N 4= agaip maximal unsolvable, . take E‘FE Z,= L.

1¢) U is a Proper subterm of R, note that the caseg

BEA, U=%x2 are impossible because these are not maxi-

mal unsolvable,

cl) O ig a PIoper subterm of A, Considex the diagram
' N=c'[ (Axc[u])B)

PN
N= c‘E'EH:JE[Uﬁ‘] ':'I:f‘ht![i]]ﬁ-? L
X P
21~ L= U (B/x]1cLRT ]

Here t1 is obtained ip the following Way: Consider tha =
Tesiduals of y 4 H, these are contained in maximal
unselvable subterns cf N, contract these to get E—.I.
Now I, and § only diffar in those places vhere o
resp. Q stands, therefore 3y~ £,
Te2) v 1=z a subterm of B, thig Case 1s treated like icl.
Case 2, M 52N, N —fr—}L.E-}' induction on the l-n-;n:h
Of the reduction M —_ﬁ,—yL. Length one is just case

In the induction Step consider the diagram




=

By lemma 2.3 the [F-redex in M has at most one residual

in I.r.I and L; 31, 32, E'l' II

thesis, from (CR) for we get Z and ¥, by the

exist by induction hypo-

v >
remark preceeding lemma 2.6 we have ‘1"'2 T

Casa 3, M TH M ———}L, by induction on the length
of M -T-J'H. Length one is case 2, In the induction
step consider the diagram

%\

‘"‘\4’

\;,.,/

in which it is indicated what we know by inductiom hypo-
thesis, Let R be tbe (3-redex contracted in the step
N, “TS"H' We have the following subcases:

3a) R has no residual in 51. i.2. B 1is contalned

in one of the [ "-redexes in H‘l which are contracted in

the reduction H -—ﬁ-.-h-f- We are done becajyses
Eanf EﬁEE,!r-J'Ez .

3b)] R has a residual R' in 21.
31} R'" is contained in a maximal unsolvabla subterm

of Z,» Now again Iy~ Z, ~ L, ~ I, .

3b2) R' is not contained in a maximal unsolvable subterm

of z,, Let B, % clrq . By induction on C we find a contel

1!
C' and a F-»]:ide:r. R" corresponding to R' with
IS
lf'
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and EEEE ¢'[""] and R" 4= not contained in a maximal
unsolvable subterm of EE' Yow we are done because from

the cases 1 and 2 we know that E‘i i1s the result of con-
tracting R' din 31, let 25 ba the result of contracting

RY in &.. A
2, . now L—‘;?bzﬁ and obvicusly 3%, o2, VI,

Case 4. M —g’f’—;m, M —ﬁ,—-}_ﬁ. works by a simple induction
on the length of the reduction M -j}qbﬂ because
&~ and {'-redexes in a term are eithez disjoint or the
d-radex is a proper subterm of the {1 '-redex.
The lemma now follows from the cases 3 and 4 by a simple
induction.

Gd

' We are now able to prove

2,7 Theorems: F:f]@ nag the Church-Rosser-proparty.

Froofr In the diagram balow we f£ind ”I' Hz, L1, L2 by
lemma 2.4; (CR) for -Ilir-aw gives 31; Hj, Hd' 1-3' Irl &
exist by lemma 2.6; He s L5 ara produced in the obvions
way and finally (CR} for -jir% gives I,

M
. {&:’:“/P,r/ m\, n
RN -
2N

-r‘i."
2

* 0 X L‘
/51'/ /

H :1 it H

3 o~ HEF L, o~ l.;‘/ﬂ'd'

ﬁ‘afuﬁf_ﬂ 4 .

b | -
._.Q.. “A

=

)

]



Onca we have 2.7 it is easy to include p-conversion.

2.8 Theoxrem: m has the Church-Rosser-property.

Proof: By an easy analysis of the possible casas one
can sae that T} and m comnite and we get the
result from the Church-Rossar—-theorem for _"i..—b =

=
Finally like in Barendregt et al.[2] we can drop the
restriction that only maximal unsolvable subterms may

be roduced to ﬂ .

2.9 Lemme: Lat M —d;—rn, then thers eaxizts an HN"

Pl
such that M ———3>N' and N —f—aNR'.
LTRSS ' [ o S

Prooi: By induction on the number of [l -steps in the
redoction Hﬁ;ﬁ;ﬁﬂ. Iat HP—-{}E‘—I}H‘ -—_nr—)h;ll o H
and N, —=—3N, be the last Si-step in the reduction
from M to H. The C) -redex (| contracted in N, is
contained in a unique £ "-redex ©', U' has a unigue
residual in N, which is again maximal mauinhh. How

consider the diagram




L comes from centracting U im H1 resp. U' in I‘il2 ’

H.i exists by induction nypothesis and tha existence of

L' and W' follows from (CR} for
PP

=

ks an immediate consSequence we get our main result.

2.10 Theorem: W has the Church-Rosser-propercty.

Froof: Let R > M » L ;, construct according to

lemma 2.9 H', L' s=uch that

M

¥ L - a4 - Tur " % E e - s
Mow & as in the diagram s2xists by {(CR) Ior ﬁ,;:ir:‘;?. But

&

¥ = ~Teduc y - B L
any X eduction is also a m reduction =
Acknowledgement: I wish to thank Jan Willeam EKlop for
dllowing me to include his theorem 1.5 in this paper

and for pointing out an error in an earlier proof

of theorem 2.10,

Some of the results in this paper are alrsady containead

in my Habilitationsschrift.



BEFERENCES

1. Barendregt, H., The Type Free iamh&a Calenlus

Prepzrint Utrecht 1976, tc appear in the Handbook

of Mathematical Logic.

2, Barendregt, H. a&and J. Bergstra, J.%W. Elop, H. Volken,
Degrees, Reductions and Rﬂpr&aantahliity in
the Lambda Calculus
FPreprint; Utrecht 1576

3, Church, A., The Calculi of Lambda Conversion
Princeton 1941.

4. Curry, H.B, and R. Fays, Combinatory Logic I
North Holland Publishing Company, Amsterdam 1958

S5.Hindley,; J.R., An Abstract Form of the Church-Fosser-
Theorem II, J5L 3% (1974),1-21,

6. Hindley, J.R. and G, HMitschke, Some remarks about the
connections between Combinatory Logic and axicomatic
recursion theory.

THD-Math. Preprint Nr. 203, Darmstadt 1975.

7. Longo, G., On the problem of deciding eguality
Preprint, Pisa 1975.

8. Mitschke, G., A - Kalklil, d-Konversion und axiomatische

| Rekusionstheorie.
THD-Math. Preprint Nr.274 (Habilitationsschrift)
Darmstadt 1976,

9. Bosen, B.F., Tree-Manipulating Systems and Church-Rosser-

Theorems.
Journal of the ACM 20 ,(1973), 160-187.
10, Wadsworth, C,P., The Relation between Lambda-Expressions

and their Denotations.

5iAM Journal on Computing 5, (1976), 588-521.




	disc0001
	disc0002
	disc0003
	disc0004
	disc0005
	disc0006
	disc0007
	disc0008
	disc0009
	disc0010
	disc0011
	disc0012
	disc0013
	disc0014
	disc0015
	disc0016
	disc0017
	disc0018
	disc0019
	disc0020
	disc0021
	disc0022
	disc0023
	disc0024

