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DISCRIMINATORS IN COMBINATORY LOGIC AND A - CALCULUS 

Gerd Mitschke 

§0 Introduction 

In this paper we consider Yarious systems of Cotobin~tory 

LOgic and ~ - Calculus augmented by certain "discriminator 

rules•. We will mainly bo concerned with consistency 

and definability problems, but we study also somo properties 

·of the resultin9 reductions. 

A discriminator axiOJ'l\ is a reduction axiom of the form 

Jxy __ _,, 
{ 

I< if (X, Y) E R 

KI if (X,Y) ¢R 

where~ is a new constant added to the system considered 

and Risa binary relation on a specified subset V of the 

set of all terms of that system. In Combinatory Logic K 

and KI have the usual meaning, in the 'A-calculus K is '4.~x 

and KI is ?I x').yy. We will give conditions for V and R which 

iniply the Church-Ro.as.er-theorem for the extended system. 

we shall make use 0£ the context notation. A·cohtext will 

be a terA with one or more botes ;J.n it, to be precise 

0, 1 Definition: The empty context [) is a eontex:t, if C is a 

context and Mis a tenu or a context, then CM, MC and Axe 
are contexts. 
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Thi& definition works for ').-Calculus and Combinatory Logic, 

A conte.'<t will b1! denoted by C = C(, , , :1 where the spaces 

between the commas indicate the holes in the order in which 

they appear in c. c[M 1, •• , ,M
0

] mean·s that M
1

, ••• ,Mn are 

substituted for the holes in C. 

All other notation is standard. We uso [M/x]N for "M ~ubsti­

tuted for Kin N•.- always denotes a one-step redueUon 

and we uso sllbscripts to indicate the system in which we 

work, e.g, JS • is 1)-reducti-on defined by c[aj-r C[R'] 

who.re R ia a ~-,:edex, C at'ly context and R I the contraetUin 

of R. Furthermore~ deno.ee the reflexive and transitive 

clo::Ju.re of -- • '!'ho equality given by---+ (equivalence 

relation generated by --~ l is denoted by • with the same 

subscripts as --➔• ').r d..;,otes the usual ?.-Ca1culus based 

on axiom cp,>, CL is Coinbinato:ry Logic based on :r,K,S as .,-. 

primitive combinator1,. Additional axioms to¥ or CL,a:ae 

e.g. indicated bf!l,~+(,/i). We .sometimes write '>-f>I-M·• N, 

'-~1-M-N for M i5 N, M7>~N and similarly for all other 

thaories • .= -denotes identity o:f terms, M s N for ?.-tenns 

means that Ill and N only differ in their bound variablaa. 

Throughout this paper we avoid mentioning changes of bound 

variables. All other notions and notations arc standard and 

can ba found in Curry - Feys [ 4 J or in Barendregt [ 1 } • 

The first ex=ple for a discriminator axiom occurs in Chu.rch(. 

there it i• proved that tho axiom 

{

Kif M 1ll N 
(clCh) J'HN_,.. 

11:[ if M 9' N 
for oonatant noraal ran.• H,N 

can consistently be added to '>-~ . 

• 
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Hore constant term means torm without t.cee variables (without 

variables in CL). The sAJr.e result holds for CL w~th ~ replaced 

by=. We will derive this result as a corollary to a more 

general theorem later. The restrictions on M, N ~n <cft1,l 

seem to be quite natural, and ind~ed some restriction& are 

necess~ry as is Dhown in the firat lemina, 

0.2 Lcmraa: CL and¥plus the unrestricted <liscriminator 

axiom 

Proof: LotY in both system• denot~ the well known paradoxical 

combinator of curry and let P = Y (S(l<I) 1. Then by the fixed 

point property of Y we have 

CL 
f K it F~KI 

<?.jll I- F - C(KI)F-, I 
LJ!.I if Ffltl 

.. 

In the first case we have CL(\\f>l I-K•XI from which we deduce 

the inconsistency CL(~~)~ x•~xy-Kixy•y. The second case is 

obvi~usly contradictory, 

This proof only uses the incompatibility of a fixed point 

operator anQ a discri~inator. In general P does not have 

a normal form; eo one might try to restrict the discriminator 

to normal forms, i.e. consider the axiom 

for normal foru M,N 
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In II~+ (J") we immediately get the inconsistency 

KI+- (:>.x'>-y(KI) )KX- c:>.x:>.y(S:,cy) )KK-----.tKK-+K, 

CL+(S") is consistent as the reader may easily verify using 

the 11>ethods of § 1 • The reason for thiG is that in CL the 

variables behavo like constants or free variables. However 

we loo&e the substitution property 

X-a,Y =:XM/xJX-1 (M/x)Y 

because 

(K/x](K/yJ(8xyJ= JKX ...... K and 

(K/xl(K/y] (KI):KX but not I( ....... Kl. 

we finally montion the folloving undefinability result. 

0.3 Theorm: Church's S ia not. definable in the 'A-Calculus, 

i.e. there is no '.A-termcS satisfying (c5Ch). ' 

This rDnult was proved indope:ndently by Barendregt and 

Wadsworth, see Barendregt et al. (2 J or aindlcy- Mitsehke[6 J 
for a proof. 

• 

! 

• 
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§1 Consistency result• 

Now we develop conditions for 6-a>doms which are sufficient 

for their conaistency with "P, CL and s-omo other systemp. 

To be more precise: We give conditions for a $-axiom($) 

from which one can derive the Church-Rosser-theorem for 

'>.p+C§), CL+(c5) etc •• For this purpose a 1.,_ discoverd 

independently by R. Hindley and n. Rosen will be of great help. 

The Chw:cb-Rosser-theorem !or a reduction means that--~ 

satisfies the property 

l CR) If M ~ N 
1 

and II J..,. .N
2 

then there exists an N
3 

such 

that N1 ~ N3 and N2 -Lt-N3• 

For this we often c!.,;aw the well known <U.agrarn 

.M 

N N 
1 2 ' / ' / ,,. ,t_ 

Ii 3 

1.1 Lenima: (Hindley(S ,Thm BJ, Rosen( 9 ,Thm 3.5,3.6) ) 

Let 1 and ~ be two reduction relations on the same 

set of terms both satisfying (CR). Then -= ,v 2 
has (CR) if 

1and ->. 
2 

satisfy 

(Com) Whenevor M 1 N and M 2 L then there eJd.st• .. 

Z such that N --. 2 z and L 1 z or L;.Z 1L111z l • 
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'l'he abbreviation (COm) indicates that this condition implie~ 

l and --~~ commute in the aense of the diagram 

The pxoof for thia fact is in Roaen [ 9 , l8I11Ua 3 • 6 ] , 

For tl1e rest of this paper ,,., r11ttrict ourselves to the 

:>.-cclculua, but it is naay t.0 verify that most of the 

results carry over to combin~tory LOgic. 

New lat T.S be the set of all ?.-terms constructed from vari•hle• 

and one additional constant d, vs TJ be a •et of closed 

terms and Rs, v >1 V lo. binary relation on V. 

1.2 Definition: (i) ~e reduction - $ , assotiated with 

(V,R) is defined by the axiom 

8MN 
{ 

K if (M,N) E R 

7°" KI if (M 1 N)f V><V - R 

(ii) Tho pair (V,RJ is 8-stable iff the following three 

conditions are satisfied (with 7J7'> = I> l u J' ~ ) 

,£51) If M.EV and M r:.S- M' then M e V, 

(52) If (M,N)e R, MfrM' and N~ If' 1:hen (M',N')6 

• 
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(S3) If M' <.nd N then 

(H' ,N')6VxV - It. 

The notions of redox, residual etc. are extended to 

'.>.j', +( J' (V,R)) in the usual way, but note that $MN is not 

a redex if MtV or NfV. 

The most pi<ominent example for a .f-stablc pair is given 

by: V = the set of all closed nornal forms, R .:: • 

'lbe &-reduct.ion associated with this pair is ju&t Church' 

<>-reduction. In the sequel let (V,R) be a fixed &'-stable 

pair. Using. the llindley-Rosen-1.....,,a we vill show that /S.i' I 

has the Chorch-Rossor-property, 

1.3 Lemma: S ) satiafiea (CR). 

Proof; (CR) for a reduction says that <:0mmuteB 

with itself, 'l'horefore we show (CO~) with ,- 2 
= __ _,, 

6' Let M S > N, M 6 L and recall that this 

means that M contains two redexes R1, R
2 

and contracting 

R1 gives N, contracting~ givaa L. We prove (Com) by con­

sidoring the various possibilitieo for the relative positions 

of R1 and R2 in M. Let Rl, R2 be the contracta of R1 , R2 . 

case 1. R1 and R2 are disjoint, Now _11-;; c(R 1 ,R 2 
J, consider 

the diagram 

M: C[Rl'~J 

/ ~ 
Ni: C (Ri ,R 2] C (R1 ,R 2 •J • L 

~/ 
Z>; C[R 1 ,~] 
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c~ee 2. R1j_s: contained in ¾: Witho11t loss of gene.ra.lity 

we asaur..e that R
2

<' J'c(R
1
Jx .and MgC'[R 2J. The proof can. 

be taken fr0lll the diagram 

M~c•(&"c(R,JX] 

,/ "-,. 
N £ c•[J'c[a 1J xJ c•[~} .:;L 

~ 
z;;c•[a 2] 

Z: c•[a 2] becau&., the cond.t.ion of .f-atabi.lity makea sure 

that J'c (R
1
] X and cfc[Rj] x have the aame contractum. 

Ca110 3. a
2 

1• contained i.n a 1 Thi.a case 1a dual to case 2. 

No oth~r c3so• are poaalbla~ 

uow we are able t.o prove 

1 • 4 Theorem: i,;f I h.a:s t.ne Church-Rosser-propei·ty and 

therefore ~J' l.s consl,stent. 

Proof: We check condition {ColO) now for ~ and J l • 

Let MrN by con traction of the r,-redex Q and Q' be the 

contractWtl of 0, The &"-redex oAB contracted 1:n M to obtain 

Lis (without loss of generalityJ assumed to have contractw:t. K. 

case 1 • cf AB and Q are dis joint. We have the situation 

caae 2. O i• i.o <fAB, say ir. A. Con.aider 

• 

• 



M ,c c[Jc '[ Q]B] 

/ ~ 
N:; cr.rc•CQ'J BJ C[KJ :L 

~ ~ 
C(K]EZ 

In this case th~ §~stability of (V,R) is used to assure 

that J'C'[Q)B and cl"c'(:Q'lB have the Ean,e contract11111 K, 

case 3, Sto:a is in Q, here we have the following two poasi­

bill.ties 

a) Mi: C' [(?.XCC.,ABJJY] 

bl M=a C'((?.xY)C[.fAB]] 

aubca11e a) ia txeated in the diagram 

M?< C'[ (?.xC(dAB]JYJ 

~ ~ 
1,,,, C'((Y/xJc[cfAB] C'((~xC{K])rj ... L 

~~ 
z l! c'[ [ Y/xJC(KJJ 

lier we can COl'IC:lude N -,..-~ Z only bec•u•• A. and B are 

closed and therefore left unchanged in the reduction M-,.-;N. 

suhc:ase b) is solved in 

M = C ' [ (:>.xY) c[&A.BJJ 

~ ~ 
N!:C'[[c[IABJ/x]Y] C'[('>.,:Y)C[R] ,.1, 

~ A 
z"" c•[(C(KJ /x]YJ 

llere we c:an conclude only Ny Z because C[d'AB] c:an be 

substituted for several free occurrence• of x in Yin ths 

reduction M /S , N. So we actually used the full atrengtl, 

of the Bindley-llcson-lemma. 

No othar caaea are possible. 



- ,v -

some remarks have to be made at this FOint 

Remark .L Theorem 1 • 4 respee-ti vely its analogue can still 

be proved if we include the exteneionality axiom <i>, one 

has only to reformulate the definition of $-stable, in 

1.2 (11) ono has to replace W by ~ • -~v ~ • 

The extra caaes to be considered in the extended proof 

are tri'l'iiil. 

Remark 2. In the proof of 1. 3 and 1 . 4 not only (CO..) wae 

pro'l'ed but also what Curry calla •atrong'·property (D) • 

(curry-Fey• [ 4 ,§4B,C)J which inturn i~ a key to many 

other nica properties, e.g. Curry's property (~), s01B0Umea 

also called (FD+). For p,;, tho atrong prope~ty (Dl .i• 

the st•te-.,t, 

J,et M contain two redexea R1 and R2 , M -,r;r+ N by contractiug 

R
1

, M 
p,l' L by contracting R2 . 'I-hen there 16 a Z. such 

that II "' ~ z by a devaloprm.a:nt of a11 residuals of Ri r, 6 

in N, L-fr Z by a development of all residual& of R1 in 

Moraovar after both reductions the rea1duals of a.ll other 

redexes in M are the same in z. 

As property (OJ is trua for -➔ () 
we only have to check 

tbe cases where Rl' R
2 

are cS'-redexes or one is a ~-redex 

I.. 

and the other one a 6--redex, this is just dona in the proofs 

of 1.3 and 1.4 plus the observation that the r~siduals of 

the redexea in M. are always the same in Z. 

Finally we mention some examples for J'-atable paJ..rs (V,RJ. 

EXample' 1. Vs the set of ail cloaed bead noxmal form.a, 

R • the sl!nl.larity relation between head nonu.J. fonna. 

For dofin.ltions seo Wads\<Orth(1GJ ot Barenc!regt [ 1 J . 
EKAu;ple 2. v • all closed tem• tn vh1Gh & do11a not 1>ec:JU", 

R • separability of closed terma, i.e. 

• 

• 
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(M,N) € R if£ 3x 1 , •.• ,X;_ (MX1 .•. xk T x" NX
1 

•. ·¾+KI. l 

The restriction on V is neccs sary; dKK and .K are not 

separable and aa K is not separable frorn itself we would 

have the 1mwanted reductions 

cl(ill)K ~ KI and 

d(dKK)K 7 dlKI)K7 K • 

In my llabilitationssc:hrift I .as);ed wether (CR) for '>I~+ <cf
1
v ,RI l 

1'"pliea the o'-stability of (V,R). Jan Willem Kl.op fro,n 

Utrecht provided the following an,..,.r to that problem, 

1.5 Theorem: (i) If V is closed under 
13
!,> (i.e. (Sl) is 

valid), th.en (CR) for pr implie■ the &:-stability of (V,RJ, 

(ii) (CR) for :>.f+<&(V,R)) does not imply (S1). 

Proof: {1) 6uppoee that (S2) oL (S3) 1 ■ false, eay (S2). 

Then there exd.st M,N EV and H.', 1 ' au.ch that M p;'" M', 

N ~N', (M,N) ER but (M' ,N') lj_ R. Nov c:one1der the 

reductions 

M-. M1 --,.M 2 --, •. , -Mk:: M' and 

H--> N 1 ~ '.N 2 -+ . . . --:?>N1 ,:r. NI • 

As (M' ,N') f R we must find a number r s.t. (Mr,Nr) <c R 

Md (Mr,Nr+1) t R , or 6j'lll1Jletric11lly. NOW for Mr, Nr' Nr+1 

we have the reductj.ons 
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§2 DiscrimJ.natord and 11nsol vablea 

In :>.p and ?. p+ ( 'l,l the closed he ad normal form,, ar,e exactly 

the closed aolvaOle tex:ms. Thus for every closed head 

nOrmal form M we find terms x,,···•¾ such that 

MX1 ••• ¾ ii• N, where N is II normal form (WadaworthClOJ). 

When c:f-redu.ctions are preso.nt we h.ave to define 

2.1 Definition, A cloGed ter111 M is solvable iff there 

exist te>:ms x 1 , ••• •¾ such tchat MX
1 

•. •¾ ~0 >-N where 

N i:, a nor=l form. An o.rbitrarJ tent r. with £ree variable• 

x 1, ••• '"n is ca1led solvable if its clo11ure ?.x 1 • •• ?.xnX 

is solvdble. 

In :>.f, we can repl,ica N in thi• defiuitJ.on bf K, this will 

fail in g,,naral for '>.jl+ cJ1~ ,R) l, becauee we can have vary 

strange o-atabla paira (V,R). 

In'>-(>+(~) one can consistently iden.tify all unsolvable 

termtl (see e.g. Wadsworth[10] or Barendregt et a1.[z) ). 

Longo [ 1] asks wether this re:maina true 1n '>-f plus a dis­

criminator on normal forms. In this paragraph a positive 

answer to thi.s question is 9iven. 

We need the following facts about unsolvable teX'JQs 

1. If U is unsolvable, then also ~xU and UM for any M. 

2. If u·1s unsolvable, then also [M/x]U for u,y x and M 

bocause otherwise (~xU)M would he solvable and theratore 
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But this oontr~diets the Church-llosser-theorem, because 

K and KI have no common (3J' J -reduct. 

(ii) Take a &'-stable pair (V,R) and choose an AEV s.t. 

there are A', A!" with 

Now conaidex- (V 1
, R •) e 

is no longer J'-stable. we note that every reduction in 

?,~+(o(V,R)) can be made into one in ').(l>+~',R')): The 

only contractions in ').P+<J'(V,R)) not <Lllowed in').~ +<cfiv• ,R' 1> 

are of the fom 

<)1/Jj-K 

cfAS-Ia 

J 

i olJA -v KI 

But e.g. the first one can be replaced by the reduction 

JAB T A"B 7 K and similarly for cru other ones. 

Ila ov~ry J'{V' ,R')-reduction is also a "iv R) ·rcduction,. 

wacaneasilyder1ve (CR) for ?.~+{cf(V',R'))' 

• 

, 
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In the rest of this paragr~ph ~ is the discri.m.inator on 

closed f.>iJ-normal forms.Q i='}.x~xx)')..x(xx) is the well 

known "standard" unsolvable tenn,. .fL -reduction is then 

defined by the axiom 

IQ) UT .Q for any unso1vable term u. 

Wo will prove the Cburch-Rogsar-theorem for 

unfortunately a direct arqumant via the Hindley-Rosen-

lewna does not work because 

mute .. A o:,untercx.mplt.: is 

~ 
[B/x]u 

T and T do not com-

.J'l. B 

where U is unGolvable. The o~ly possible reduetions to 

fill the diagrllffl are [B/x)U -:;r--+.Q. and ftB rfL, but 

this last contraction should be a (.l-step to malt,e com­

mutativity work. To overcome this difficul.ty in the p~s"e • 
case Barendregt et al. ( 2) introduced an awciliary reduction 

~ defined by the axiom 

<.52.') c(u] ---'t c(.R.J. if u is a maximal unsol.vable 

subterm.of c[u] , i.e. no other ,,.btera of c[.u) containing 

U ia unaol.vablo. 

• 

• 

• 

f 

• 



The Church-Rosser-theorem is then proved for P~ v .fl.'' 

e ~ via a labelling and underlining technique. I shall 

give a m.ore direct proof of (CR) for P,o.R.' a {l<f v .fl.'> 

which in my opinion makes better visible the interactions 

between the different reductions involved. The reault wi~l 

be extended to include 1-reductions. 

The Hindley-Rosen-lemma also fails for ~& and ff 

Certainly ~ and J2.") commute because a 0-radex and 

an unsolvable subterm munt be disjoint or the 6'-redex is 

contained in the .R_•-redex. But the diagran, 

KI l/1. 0) 

KIR 

')" (KI (xJ2.) l 

.4 
Jll: (,R. J?_l 

~ 

• 

with unsolvable U 

mute. 

shows that ~ and .J1! , do not =-

2 . 2 Lemma: Jt ) has the Church-Rosser-property. 

Proof, Clear, since two different $2'-redexes must be disjoin 
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2. i3 Lel!ll1la: Let M 

most one residual 

"' .Jt) N, then any{!>- or J'-rodex has at 

in N. 

Proof: Th.is is obvious for T and thus for 

2 .4 Lemma• (Postponement of. .Jl•-contractions) 

* Let M PS.JI!,> N, then there exist. L and z such that 

L ; > z and N ; ) z. 

Proof: B¥ induction on M ~ , n. First consider M -1r-M•-, .. 
~$Ji .Jt• 0~ 

Let u bo the.n.•-redex in M and R the redex in M', 

caae 1, '.R is a <f-rcdex. 

Take Z£:N and use the fact that ~ and ..fl' com.1mte 

casa 2, R: (?utll) B is a ~-redex. 'He look at the poasibilLt1 H 

for the relative posi t.lons <>f R and the 

of U in .M1
• 

2a) R and .fl. a.re disJointi trivial, 

Zb} R:c.Jl,t.1vial beCII\Ultl M';N , 

2c) M': C'((~C[..R])B • 

eon tract.um 

Now M: C'((t;l.xC[IJ])B , WO take L 2 C'C[B/xJC(Ol 

Noxt we ·1.ook at the residua.ls of .fl. in N and of o in L 

They are contained in ma,xim.al unsolvable subtarms of N reap. 

L, contracting these t6 .R .reduces • N and L to the same 

te.rm z. 
2d) M' E C'((llxA)C[.Jl.1 • Take L;;.C'((ClD]/x],. , look at 

the rasJ.dua.ls of U resp. Jl. in L reap. II and proceed 

like 1n Zc). 

These are all possible casea, 

The induction step 1a easy· u■e 2.z, 2,J and tho fact that 

in the case above M reduces to L in at JIC>at one 11.ep. 

~ 

• 

' 
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in the last two cases of the preceeding proof N ~nd L 

only dif~er in their maximal unsolvable subte:rxna and this 

was also the case for KI(.Q.U) and KI(.52.Q.) in .the 

eounterexample to the llindley-Rosen-len,ma. Thia obaervatiJn 

leada to the followini definitiom. 

2. 5 D<>fi.nition: M
1 

,_. M
2 

1.ff there exists a context 

c[ ,-••• ,] cuch that M1.;;c[o 1, ... ,ul<J, ¾;; c(v 1, ••• ,vk] 

and 0 1,., ,,uk are exactly tho maximal unsolvable subteru,a 

of M1, v1' •• ,vk are exaaUy the m,iximal un:solvable 

subterma of M
2

• 

Obviously,-, ia an equivalence rela~ion.Moreover M J,• H 

implies M ,._, M • • 

2.6 Lemma, ¥ and y cCJ111111Ute lllOdulo ~ , i.e. 

"henever M (l~ l N and M ~ 1, then there exist z 1 , 112 

such that N Ji, > z 
1 

, 

In a diagram 

Proof: We prooc:cd by induction on the lengths of the 

reduction8 and M_J.)i.. 

Caso 1. M ()o N ' M ~ "· let R: (l\XA)B be the j3-redex 

IJ the .!2 • •redax in M which are contracted . 
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, la) R. and U are disjo.int in M , trivial. 

lb) R. is contained in U, U: C[RJ. The residual of U 
in N 

is again maximal unsolv~le,.take z
1
~ z

2
~L. 

1a a proper .subterm of R, note that the cases 
le) u 

U l: A, Uaa~XA are itt1possible beoauae these aro not l!l&xt­
mal unsolvable, 

lc1) U ia a proper subtorm of A, Consider tho dia11ram 

Ma, C' ( (l\kC[U])B J 

~ 
C • ( /?.xc (5']) BJ,= L 

~ 

11. C'! (B/>r.JC(UJJ 

sr\; 
Z1 ~ z2 ;; c 'l [ a/x]c(SI.]] 

IJere z is obtained in the foll<Ning way: Consider the 

~esiduals ot U ~n H, these are contained ~n max..iJn.«1 

unsolv.Wlc aubterzr.s of ». contract thea<? to get. z
1

. 

Now z2 and N only differ in those places where u 

resp • .Q. st:ands, thero.fore z
1 

rv z
2

• 

1c2) U is a subtorm of B, this case is treated like 1o1. 

Caso 2 , M ---;.➔ N, Ii p r.. By induction on the length 

of the reduction M k) L. Length one is ju4t ca..ae 1. 

ln the induction step consider the diagram 
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By lemma 2.3 tho fl,-rcdex in M has at -most one re$idual 

in L1 "nd L; z,. z2 • y 1 • y2 exist by induction hypo-

thesis, from (CR) for J2.•) we get z and Y, by the 

.remark preceeding lemma 2. 6 we have Y
2 

,v Y. 

"' " Caso 3, M -rN, M ~L, by induction on the length 

of M ; N, Length one is casa 2, In tha induction 

stap consider the diagram 

II 

"- .,. 
./"I.! "-;. 

in which it is indicated what we Imo.., bJ induction hypo 

t.hosis, Lat R 00 t.he (l-redax cont.racted 1n the atep 

N1 ~ N. We have the foll<r,.ing subca11e•, 

Ja) R bas no residual. in z1, i.e. R la oontained 

in one of the Jt '-re dexes in N 
1 

Yhieh are contracted in 

the reduction N 1 ;_, z
1

. We 4re don• because 

:z;3 ~ z4 ii z1 ,-.; z2 , 

3b) R has a residual R' in z1 , 

3b1) R' is containod in a maximal unsolvable subterm 

of z1• _Now again z
3 

,v- z
4 

_, z
1 

,,..,J z
2 

.. 

Jb2) R' is not contained in a maxilnal uneolvable subterm 

' of z
1

• Let z 1 ~ C lR 'J . By induction on C - find • ocnt 

C' and a p-redex R" correspondinq to R' with R'"""'R• 
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and z 2 =. C'(R"] and R" 1.s not contained in a maximal 

unsolvab1e aubterm of z
2

• Now wo are done because from 

the cases 1 and 2 we know that z4 is the result of con­

tracting R' in z1 , let z5 be tho result of contracting 

R" 1n i 2 • now L ~ ➔ Z5 andobvious'y e
3

~z
4

...vz
5

. 

Caso 4. M. + N, M ];__. ➔ L work• by a aimpl.e induction 

on the length of the reduction because 

rS- and .Q.' -redexcs 1n a t:a.zm arc either disjo~nt or the 

d-redex i... a proper sub~erm of Lhe ..Q'-redox. 

The lm:ima now follows from the cases 3 and 4 by a simple 

induction. 

Wo axe now able to prove 

2. 7 Th o~oru; prt~ hafi the Church-Roa:ser-property. 

Proof, In the dtagram below we t.ind ti 1 , N2 , L1• L2 by 

lemma :Z,4; (CR) for r-,s~ give5 z,1 N3 , 114 , L3, f,~ 

exist by lemma 2.6; N5 , L5 Aro produced in the obvioua 

way and finally (CR) for .fl.' ➔ gives z. 

II 



Once we have 2.7 it is eacy to include i-conversion. 

2 , 8 Theorem: 

Proof, By an 

can see that 

~'1,~"$] has the Churcb-RoGs~r-propcrty, 

easy analysis of the possible cases one 

~ and f> .rJli co.-mute and we get the 

result from the Church-Rossor-thearem tor • 'Z. 

Finally like in Barcndregt et al.(2J we can drop the 

restriction that only maxitnal un•olval>le eubterma may 

bo rcducnd to .Q , 

• 2,9 Lemma: Let M l''\J'Ji 111, 

such that H (>~ ;J!., N' and 

Proof: n;.• induct lon on tM 

then there ex 1st& an N' 

N - ..it_..,. N ' . 
~7J'..RJ 

lllllber of JZ aleps in the 

rudcclion Hp,.-~> 11, Lat 11 p,,:si> N1 

and N1 .S1. N2 be the la•t -':!:•step 

rt. ~ N2 p,7' 
in the reduction 

from 1-1 to tl. 'l'ha .Q.-redax U contracted in N1 .c 

contained in a unique .Q '-redex U', U' haa a wtiquo 

residual in 112 ;,h.ch is again maximal uneolva.ble. Now 

consider the diagr<llll 
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L cornea from contracting U in N 1 resp. o • in N
2 

, 

N1 exiats by induction hypothesis and the exi&tence of 

L' and N' t'ollows from (CR) for 
llil 

As an 1-ediate consequence we get our main result. 

2. 10 T~oorem: I>~_. St) has the Church-Rosser-property. 

Proof: Let N --+M --➔ L , construct acco.rding to 

lemina 2 .9 N•, L' .such that 

Now Z aa in the diagram eKists 

-reduction ie aleo a 
by (CR) for fl~ .;]ii • 

f'i .rsl ,:eduction, 

Acknowledgement: I wi~h to thank Jan !l'illam Klop for 

allowing me to include his theorem 1. 5 1n this paper 

and for pointing out an error in an earlier proof 

of theorem 2 .10, 

>IUt 

111 

Same of the resul 1:15 in this paper are already contained 

1n ,ay Bab1litat1onsschr1~. 

• 

• 

• 
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