
UNIVERSITA' DI ROMA

ISTITUTO DI AUTOMATICA

C,BATINI A,PETTOROSSI

SOME PROPERTIES OF SUBBASES

IN WEAK COMBINATORY LOGIC

R.75-04 MARZO 1975

RAPPORT! DELL'ISTITUTO DI AUTOMATICA DELL'UNIVERSITA DI ROMA E DEL CENTRO

DI STUDIO DEi SISTEMI DI CONTROLLO E CALCOLO AUTOMATIC! DEL C. N. R.

This paper should be used only for personal, scientific or didactic use; not for selling purposes.

C. Batini - A. Pettorossi

SOME PROPERTIES OF SUBBASES IN WEAK COMBINATORY LOGIC

I

Ing. Carlo Batini, Centro di Studio dei Sistemi di Controllo

e Calcolo Automatici del C.N.R., Via Eudossiana, 18

00184 Roma

Ing. Alberto Pettorossi, Istituto di Automatica dell'Univer

sita di Roma, Via Eudossiana, 18 - 00184 Roma

This work was partially supported by "Consiglio Nazionale delle Ricerche"

ABSTRACT

In this paper weak combinatory logic as an algorithmic

language is considered and various notions of structural and

computational complexity are introduced. Particular attention

is devoted to the definitional power of a system of combina

tors, that is to the concept of "subbase". Some results con

cerning the relations between specific subbases and their g~

nerative power are presented.

1. INTRODUCTION

The main purpose of this work is to introduce the con

cepts of computational complexity and subrecursiveness in com

binatory logic [1]. Since we are interested in the algorithmic

and computational properties of combinatory logic, we think

that a fruitful way of approaching these propierties is to co~

sider how limiting the power of the calculus (that is limiting

the allowed definitions of "programs" or the allowed amount of

"resource" used by programs) entails limitations on the abili

ty of manipulating "data".
I

Studies on computational complexity have given well esta=

blished and meaningful results for several abstract machines and

languages such as Turing machines, LOOP programs, rewriting sy~

terns [2]. Less considered seems to have been the definition of

suitable concepts of computational complexity in combinatory 1~

gic and A-calculus. An interesting step in this direction was

4.

made by H.R. Strong [3] who defined a measure of depth of

computation in a programming language based on Wagner's

URS and showed that for each partial recursive function

there is an index with uniformly bounded measure of comp~

tation.

In order to carry on our investigation on comple~ity

properties of combinatory logic in §2 and §3 we shall exa

mine properties of structural and computational complexity

of combinators in weak calculus [4] and in §4 we examine the

ability of combinators in generating pure applicative combi

nations[1]. For reasons that will b~ made clear later we re

stricted ourselves to considering only proper combinators

[1] or, in general, combinators for which it is possible to

define suitable input-output relations.

2. APPROACHES TO COMPUTATIONAL COMPLEXITY IN COMBINATORY

LOGIC

The two basic notions of complexity in the literature

are structural and computational complexity.

We now introduce the formal definitions of so~e possi

ble measures of these notions. Structural complexity is in

herent to a combinator as a static well formed object in a

specific base.

DEFINITION 2.1. - Lenght (SL) of a combinator Xis re

curstvely defined by the following rules:

5.

i) if x is a basic combinator, SL{x) = 1;

DEFINITION 2.2. - Depth of the parenthesis structure

{SD) of a combinatory xis defined by:

i) if xis a basic combinator, SD{x) = 0;

ii) if x = <x
1

x2), SD {xl = 1 + max{SD (x 1), SD (x 2)}.

A simple relation between the two measures of structural

complexity is the following:

Fact 2.1. - < SD(w)<SL{w)-1 for any combinator w. - -
Computational complexity measures are related to the reduc

tion of combinators to normal form in the weak calculus.

The measures we may define depend on the computation rule

choosen in the reduction process. Among the rules that guaran

tee to reach the normal form we will choose the standard {lef!

most outermost) rule.

DEFINITION 2.3. - Number of steps·of computation {CT) of a

combinator xis defined by:

i) CT (x)

ii) CT()()

t if x reaches a normal form int steps;

undefined otherwise.

DEFINITION 2.4. - Size of computation {CS) of a combinator

xis defined by:

CS(x) = l if l = max{SL(x.)} where x
1
. is a formula achieved du-

. 1
1

ring the reduction process.

6.

DEFINITION 2.5. - Depth of computation (CD) of a com

binator xis defined by:

CD(x) = d if d = max{SD(x.)} where xi. is a formula achie-
. l.

ved during the redu~tion process.

Analogously to what is made [5,6,7] for acceptable Go

del numbering of partial recursive functions we will now g~

ve the following definitions for measures of complexity in

the weak calculus of combinators:

(1) I I is a structural complexity measure if:

i) \ is a recursive mapping from the set of combina

tors to the integers;

ii) Vn the number of combinators w such that \wl = n,

is finite.

(2) C is a computational complexity measure for a combina

tor w if C is a partial recursive mapping from the set

ofcombinators to the integers and:

i) if a combinator w has·normal form then C(w) is defined;

ii) C(w) is defined implies that "w has normal form" is

decidable;

iii) C(w) = n is decidable.

It is not difficult to verify that, if the r-rdinality

of the base is finite, SL and SD are structural complexity

measures, while CT, CS and CD are computational complexity
(*) measures

(*) The first property of computational c~mplexity measures is satisfied
by the norm introduced in [8] in the definition of NURS.

7.

As we have already remarked, in general the way the

properties of complexity m~asures are studied is to consi

der how limitations on the measures result in limitations

on the power of computational systems. On the other hand,

for the above listed measures this does not seem to be the

way of achieving interesting general results. It is certain

ly possible to simulate tape and time bounded Turing machi

nes, restricted rewriting systems, primitive recursive com

putations, etc. in combinatory logic, and to define in this

way the corresponding classes of combinators, but this ap

proach does not give classifications of combinators well

matched to the computational peculiarities of combinatory

logic. These peculiarities are essentially:

i) the ability of "packing" data in such a way that "unp~

eking" is impossible from outside [9J and that data can

be accessed in other than a sequential way;

ii) the "rightward" mechanism of operating of the calculus

that makes it more similar to a tag-machine or to a non

erasing Turing machine than to other classical computing

systems;

iii) the impossibility in a non typed calculus of an "a prio

ri" distinction between programs and data and, inside a

pa::ogram, between primitives and constructs.

The last point is particularly interesting because the

variability of the argument {or at least of the size of the ar

gument) is at the base of the classification of the complexity

of programs and functions {typically characterized by asyntotic

behaviour).

8.

3. COMPLEXITY MEASURES IN SUBBASES

Taking into account the type of properties of combin~

tory logic listed at the end of §2, we think that a promi

sing way of studying the computational complexity of combi

nators is to use the concept of subbase and to analyze the

computational power of various subbases. This somehow corr~

sponds to the limitation of definitions in the formalism of

recursive functions, which allows the generation of intere

sting subsets of partial recursive functions, such as the

class of primitive recursive functions, the class of elemen

tary functions and the classes of Grzegorczyk [10].

DEFINITION 3.1. - A subbase is a non-empty (possibly infi

nite) class of combinators B = {~
1

, ... ,~n}.

In general we will refer to finite subbases of indepen

dent combinators.

DEFINITION 3.2. - The applicative closure of the subbase

B (denoted B+) is the class of all finite (applicative) com

binations of ~~s. We wish, in the future, to refer to the sub
J.

class of B+ whose elements are in normal form and proper. We

will indicate this class by B+.
np

We now summarize a few examples of basic results holding

for particular subbases.

THEOREM 3.1. For any combinator win the subbase {B,C,K}+

the -structural and computational complexity satisfy the fol lowing

limitations:

9.

i) CT (w) < SL(w) - 1

ii) CS(w) = SL(w)

iii) CD(w) < SL(w) -- 1

iv) CD{w) < l2so(w)-1 SD(w)-1j
+ 2

PROOF. (i), (ii) - From a theorem of Curry [1] no combl

nator exists in {B,C,K} with duplicative effect. So, at eve

ry reduction step the length of the formula decreases at

least by 1.

(iii). In a formula, whose length is n, appear n-1 applica

tions.

(iv). Since SD (w) is fixed, the maximum number of basic con.bi

nators in w is.2SD(w).

In every contraction step the basic combinators may increa

se the depth of a formula by at most 1. Therefore, if n is the

number of basic combinators used to achieve the maximum depth,

we have

CD(w) SD(w) + n, where n is the maximum

SD(w)
integer such that: SD(w)+n<2 -n-1. (The last inequality is

the (i~i) written for the deepest formula achieved). Hence

point (iv) follows.

Q.E.D.

THEOREM 3.2. - In the subbase {B} the expotential growth

of the depth is achievable. In fact:

1 0.

(i) Vw£{B}+ such that SD(w)~ 2 then CD(w)=SD(w);

(ii) Vn>2 3 w dB}+ such that:
n

SD(w) = n
n

CD(w)
n

n-1
n + L

i=0
b.

l.
where b

0
=b

1
=o

and bi+ 2=bi+l+bi+1

PROOF. The point (i) is immediate.

For the point (ii) it is not difficult to see that the class of combi

nators w, whose structure is recursively defined as follows:
n

w = d n-1wn-1 where: w = d
n 0 0

d B d d
n n-2 n-1

d = B
0

d1 = BB

has the property that all its B's with 3 arguments, in the reduc

tion process, increase by 1 level the initial depth of thew. n
We also have w = d

1
(d

2
(... (d d) ...)) , and n SD (w) .

• n n- n- o o n
Let b. be the number of B's with 3 arguments ind .. We can

l. l.

see b
0

Therefore:

0 and b. = b.
1

+b.
2

+1.
l. J.-].-

CD (w)= n +
n

n-1

L
i=0

b.
l.

Q.E.D.

REMARK 3.1. In the subbase {B,C} the limit of theorem 3.2

can be improved.

For example, if

we have CD(q)
SD(q)-1

= SD(q) + l
i=0

b. +1.
l.

whose SD (q) = 7,

11.

As far as combinators without normal form are concer

ned, we may define SL(w) (n) to be the length and the depth

of the combinator w at then-th reduction step and we may

show some properties of these functions of n for the subba

se {W} and {B,W}. In particular, we will show that, in the

subbase {W}, SL(w) (n) is somehow linear, while an exponen

tial growth is possible in the subbase {B,W}.

We will first introduce the following:

DEFINITION 3.3. The number n (w) of right-applied obr
jeats of we:B+, is defined by: n (w)=k+1, where

r +
w= (. . . ((b X 1) X 2) . . . X k) , be: B and xi e: B , 1 < i < k .

REMARK 3.2. The decomposition of win right-applied ob

jects is unique.

DEFINITION 3.4. The subwords of a combinator we:B+ are re

cursively defined as follows:

(i) if w=(ab) where a,be:B then a and bare subwords of w;
+ (ii) if w=(AB) where A,Be:B then A,B and the subwords of A and

Bare subwords of w.

It is now necessary to prove the following lemma.

+ -LEMMA 3.1. Let w be a combinator of {W} . Let w be the

leftmost subword of w such that n (w)=3. We will call w the
r

leading subword of w.

(i) If w exists:

- w has not normal form;

Vn SL(w) (n) = SL(w) (n)+c, where c is a constant.

12.

(iiJ If w does not exist, w is in normal form.

PROOF. Point (ii) is immediate. Point (i) is proved

by the following facts:

(i)
+ In any reduction step of a word W£{W} , we have:

. (*)
n (w) (n) <n (w) (n+1) .

r - r

(ii) If w=w
1

w
2

and no Win w
1

has 2 or more arguments, then

in the reduction process the W's in w
1

do not change

the number of their arguments.

(iii) If w=w1w2 where nr(w 1)~3, then the reduction process

which follows does not take into account w2 .

Q.E.D.

For the base {W} we have the following result:

THEOREM 3.3. For any W£{W}+ without normal form

3 ~ finite such that, if t,. (n) =SL (w) (n+1) -SL (w) (n) , we have:

(i) Vn<n : t,. (n) ~O depending on n;

(ii) Vn>n t,. (n) =t,. ;: 0.

PROOF. Given a W£{W}+ without normal form by lemma 3.t.

w exists (defined as in lemma 3.1) such that SL(w) (n)=SL(w) (n)+c.

We can easily verify that the following procedure gives

the value oft,.. Consider w=Ww1w2 :

(*) We denote by w(n) the combinator derived by wafter n reductions.
Obviously w(O)=w.

13.

b) if nr(w 1)~1 and w
1
~w2 then~ is determined by reducing

the leftmost win wand considering only the leading sub

word of the achieved formula.

Finally, in order to show that n is finite, we have to

prove the following assertion: given w=Ww
1
w

2
the case (b)

does not occur an infinite number of times.

Infact the structure of w
1

may be only one of the follo

wing:

1) w1 = w

2) w1 = Wwk

= + = 3) w1 = w
' where w1wk£{W} and nr(w)~3.

In case 1) the assertion is proved applying the princi-

ple of induction on combinator's lenght (SL (w) <SL (w)) .

In case 2) we obtain w~w
1
w2~wkw

2
w

2
w2 and we may apply

the induction as in case 1), since SL(wk)=SL(w
1

)-1.

In case 3) we have w~w
1
w

2
w

2
~w

2
w

2
w

2
, that is the follo

wing subcases:

3. 1) w =w
2

Cases 3.1) and 3.2) are as cas~s 1) and 2).

In case 3.3) w=WWW and~= 0.

Q.E.D.

14.

REMARK 3.3. This proof allows to determine the value

of n as the number of occurrences of the case b).

. + REMARK 3.4. We can construct a combinator WE{W} sati-

sfying a given infinite succession s={6(0) ,6(1) , ... }, such

that

(i)

(ii)

n > 0 Vn > n, 6 (n) 6 > o.

Let us indicate:

(*)
the successions without its first k elements by s(k)

the word in {W}+ satisfying s(k) by w(k);

(iii) the word W (W (... (WW) ...)) with mW' s by w (m) .

+ The WE{W} satisfying sis recursively defined as follows:

WWw(Li+1),.
w <n> =

- + Ww(k)w, where WE{W} and SL(w)

For the subbase {B,W} we have:

t.(k-1)+1.

+ THEOREM 3.4. There exists win {W,B} , such 1:._1at

SL(w) (n) grows exponentially with n.

(*) Obviously s::s(O).

PROOF. In a constant number of reduction steps (6)
+

W (W (2) B (
1

)) (W (W (2) B (
1

))) p, where pe: { W, B} , reaches

15.

+
W(W(2)B{

1
)) (WW(2)B(1)))p' where p'e:{W,B} and SL(p 1)=2·SL(p).

Q.E.D.

4. SUBBASES AND DEFINITIONAL COMPLEXITY

A particularly interesting type of results concerning

subbases are related to their generative power:

DEFINITION 4.1. Let B be a subbase; let V be an infin!

te ordered set of variables {x
1

,x
2

, ... ,xn,···}; let V+ be

the set of all finite applicative combinations of variables.

We say that L(B) is the language generated by B if

L(B} is the smallest subset of V+ satisfying the property
+ that, given any we:B , then if n is the order of w, there
np

is Xe:L(B) such that

(*)
reduces to X .

W~ prove first the following lemma.

LEMMA 4.1. If E; is a proper combinator whose order is

2, then { E;} + is the set: { E;, E; E; , E; (E; E;) , .•. , E; (E; (•.. (E; E;) .•.)) , .•. } •
np

(*) Notice that we consider for example a
1

a
2

a
3

and ((a
1

a
2

)a
3

) to be the
same word.

16.

. +
PROOF. If we suppose in{'} at exists with n>2

np
right-applied objects, then~ is not in normal formal.

(i)

(ii)

Q.E.D.

The following fact can easily be verified:

FACT 4.1.

{ x In> 1};
n -

L({K})

L ({W})
k

= {x 1x 2xjU{x 1 jk~3}
(*)

(iii) L({~,I}) = the set of complete ordered applications

that is the language generated by the production

S➔ (SS) and by substitution from left to right of all

occurrences of Sin a sentential form by the varia-

(iv) L({B}) = L({B,I}) - {Xx I if n=1 Xis the empty word,
n

if n>1 Xis a word of the language of complete orde-

red applications with the variables x
1

; ... ,xn_ 1 };

PROOF of Fact 4.1. (i). From Lemma 4.1. we know the struc
+ tur~ of the elements of {K} . For every n>1 there exists on-. np -

.ly one combinator , dK}+ such that SL(')=n, and , =K,
1

. • ,, n np n n n-
For ,

1
=K the corresponding Xis x 1 .

If the fact is valid Vn' < n then

> X
n

(*) k
Notice that we consider x. and x.x x. to be the same word.

1 1 1 l.
~

17.

where the last contraction is guaranteed by the induction

hypothesis.

Q.E.D.

PROOF of Fact 4.1. (ii). Like proof of Fact 4.1. (i).

Q.E.D.

PROOF of Fact 4.1. (iii) and Fact. 4.1. (iv). The la~

guage L({B,I}) is contained in the language of complete or

dered applications [1].

Viceversa the language of complete ordered applications

is contained in L({B,I}), because, if Xis a word of the lan

guage of complete ordered applications, and:

n-1
- X = x

1
x 2 ... xn, where n.::.1 , then B I corresponds to it;

- X = X X . .•. X and we
J n

- n-
({B}) corresponds to X, then B IW cor-

responds to it.

The last case is the one in which X = x
1
x

1
x2 ... Xk where

at least~ is a combination of 2 or more variables xi, and

possibly k=1. In this case we will now prove inductively that
+ a combinator of {B} corresponds to X. One parenthesis can be

removed from X eliminating that one surrounding Xk by B(k- 1).

Let us assume we succeded, in the expansion procedure, to re

move p parentheses, obtaining a combination of the form:

,x 1Y1Y2 ... Yl where at least one Yj is a combination of 2

or more variables, and, is a combination of B's.

Now we may remove one more parenthesis as the one sur

rounding Yj, by the deferred combinator B(j).

Q.E.D.

18.

PROOF of Fact 4.1.

the order of, is 23.

+ (v). We prove first that: v,£{C}
np

+
In every reduction step of ,x 1x 2 ... xn where ,£{C}np'

there are at least 3 argwnents between the first basic com

binator in, and x
4

.

Infact there will always be x
1

,x
2

and x
3

, because:

- on the first reduction step there are x
1

,x 2 and x 3 ;

- if there are x
1

,x
2
and x 3 on the i-th step, then they are al-

so on the (i+1)-th step, because the order of C is 3, C

has not compositive effect and no x
1

, where 1~1 23, may be

on the left of the leftmost Cina formula (' is proper).

Therefore in order to prove the fact 4.1.(v), we can

consider only the combinations of x 1 ,x 2 and ~ 3 . For

x
1

x
2

x
3

,x
2

x
1

x
3

,x
3

x
1

x
2

and x
3

x
2

x
1

after the first expansion

step the last variable, that cannot be reused, is not x 3 ,

as it should be.

Instead for x
1
x

3
x

2
and x

2
x

3
x

1
the last variable is x 3 ,

and they are actually computed by C and CC, respectively.

Q.E.D.

For specific subbases the completeness (meta)-algorithms

(such as those given in (11] for the base {S,K} and in [1]

for the base {B,C,W,K}) become more interesting. In fact whi

le in a complete base those metaalgorithms cannot always gl

ve the shortest combinator corresponding(*) to a given com

bination of variables, this may be accomplished in the case

of a subbase which is complete only with respect to a subset

of combinations.

(*) In the sense of [1] pag. 160.

19.

This is the case of the base {B}. For the proof of the

theorem we need some definitions.

DEFINITION 4.2. Given a combination of B's and varia

bles we define free parenthesis associated to the combina

tion a couple of parenthesis such that:

1) includes a combination of B's and variables or a combi

nation of variables;

2) can be eliminated in an expansion step by only one Bon

the head of the combination.

For instance, in the combination

Ba (b (cd)) (ef)
1 2 3

the couples (1) and (3) are free, the couple (2) is not free.

The couple (1) for instance can be eliminated with the expa~

sion

Ba (b (cd)) (e£) ~B (Ba) b (cd) (ef)

DEFINITION 4.3. Given an expansion with n free parenthe

sis we say that a free parenthesis 1 is the last one if it is

on the righthand of all the other free parenthesis.

N~w, given a combination X of the variables x
1

, ... ,xn we

want to find the shortest we: B+ such that

Proceeding in the expansion steps from the object X to

the object wx 1 , ... ,xn we may follow various strategies accor-

20.

ding to the order in which we remove the parentheses.

DEFINITION 4.4. We call 0-strategy the strategy that

always removes the last free parenthesis.

DEFINITION 4.5. We call i-strategy a strategy that' i times

does not remove the last free parenthesis.

We may now state the following theorem:

THEOREM 4.1. The 0-strategy is an optimal strategy.

PROOF. By induction we prove firstly that the 0-strategy

is not worse of every 1-strategy. Secondly, we prove that if

the theorem is true for every i-strategy, it is true for eve

ry (i+1)-strategy. We have to notice that the couple of pare~

thesis we have to remove can be of 3 different types according

to the structure of the two objects wand win the application.

We define the parenthesis of type:

i) VV if w
1

and w2 are combinations of variables;

ii) BVV if w1 is a combination of B's and variables or only of

B's and w2 is a combination of only variables.

iii) BBV if w1 is a combination of B's and w2 is a combination

of B's and variables.

Firstly we prove the initial step of the induction for the

3 cases.

21.

INI'rIAL STEP

1) Case VV

We compare the two strategies from the point in which

they diverge.

The structure of the combination at this point has the

following form

where x
1

is a combination of only B's and x
2

of B's and the

first k-1 variables. We construct now the histories of the

two computations. We establish in the future not to write

the terminal part of the combination composed of only varia

bles without compositions among these variables, that is

the longest terminal string of the form

X)X
1

) ...) X .
n n+ z

0-STRATEGY

where in (3) ,kk+ 1 is the combination that eliminates all the

parentheses from wkwk+
1

with the 0-strategy, leaving only one

parenthesis surrounding the object that in (2) preceeds wk.

22.

(4)

(5)

where in (5) ~lii+ 1 (B~kk+ 1B) is the object that applied to

(X1-xl(t 1t 2) ... (titi+
1

)) and the succeding variables, gets

the object (4).

We have to notice that in ~lii+ 1 (B~kk+ 1B) the paren

thesis following the last Bare in general n>1. Since we

are interested in computing lengths of combinators, we gi

ve no weight to this imperfect notation.

B [B (B ~ i (B ~ i + 1)) B] { B (~ l ii+ 1 (B ~ kk + 1 B)) } (X 1 • • . x l (t 1 t 2) • • •) ~

(1 3)

23.

where x2 is the part of x2 composed of only B's and ,END

is the combinator that eliminates all the remaining compo

sitions between the variables.

We come now to the generic 1-strategy. Suppose that

the 1-strategy eliminates initially the parenthesis (t.t.
1

)
l 1+

and after eliminates always the last parenthesis.

where ,kk+
1

is the same defined in step (3) of the 0-strate

gy.

where for the object 'O•.
1

the same considerations made
.(..11+

at step (5) of the a-strategy are valid.

24.

{9)

{ 10)

{ 11)

{ 12)

{ 13)

where X~ is the part of x 2 composed of only B's and ~END is

the combinator that eliminates all the remaining compositions

between the variables. We come now to the generic 1-strategy.

Suppose that the 1-strategy eliminates initially the parenth~

sis {t.t. 1) and after eliminates always the last parenthesis.].]. +

(1)

(2)

(3)

where ~KK+ 1 is the same defined in step (3) of the 0-strategy.

25.

(5)

(6)

where for the object 'tii+ 1 the same considerations made at

step (5) of the O-strategy are valid.

a,i{B[B;i+1(B[;fii+1(B;Kk+1B)])]} [B(X1-·xt(t1t2>-->J .:'... (12)

B[B;i {B[B;i+
1

(B[;lii+ 1 (B;kk+ 1B)])] }]B(X 1 • • xi (t 1t 2) ••) ~ (13)

;E~D {B [B; i {B [B; i+1 (B [;fii+1(B; KK+1 B)])] }]B }X1 x1 (14)

The structure of (titi+ 1) influences the lenght of combina

tors cdrresponding to X according to the two above strate

gies.

Let's define a combination t COMPLEX if it is the combina

tion of at least two objects. Let's define SIMPLE if it is

a variable x ..
J

Let's consider the four possible cases.

1) ti simple, ti+ 1 simple.

The steps (8), (9), (10), (11), (12) of the o-strategy are eli

minated.

26.

The steps (8), (9), (11) ,(12) of the 1-strategy are elimina

ted.

The new final combinators are:

for the 0-strategy;

for the I-strategy:

The 0-strategy is shorter.

2) ti complex, ti+ 1 complex.

The final combinators are the ones appearing in step (14)

of the two strategies: they are equally long.

3) ti complex, ti+ 1 simple.

The two final combinators are:

tEND{B[BtiB] [B(tlii+1 (BtKK+1B))]}x1x1

tEND{B[Bti{B[B(tlii+1 (BtKK+1B))]}]B}X1X1

The 0-strategy is shorter.

4) ti simple, ti+ 1 complex.

The two final combinators are:

The two strategies are equally long.

for the 0-strategy;

for the 1-strategy.

for the 0-strategy;

for the 1-strategy.

The initial step for the case VV is so proved.

27.

2) Case BW

The initial structure of the object has the form

where x1 is a combination of B's, x2 of B's and variables,

x3 of variables, tis a string of variables and combina

tions of variables, the parenthesis surrounding tKtK+ 1 is

the last one.

0-STRATEGY

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(1 0)

(11)

(12)

28.

s3{B[B{Bst[B(B(BsK(BsK+1))B]}x1Jx2} ~

Bs3{B[B{Bst[B(B(BsK (BsK+1>)B] }X1] }X2 ~

SEND[B(3{B[B{Bst[B(B(BsK(BsK+1))B]}x1]}Jx1

while removing before the inner parenthesis we have

X1 (X2X3)t(tKtK+1) >

BX1x 2x 3 t(tKtK+ 1) ~

B(BX 1X2 X3 t)tKtK+ 1 ~

sK+ 1 (B(BX 1x 2x 3t)tK) ~

BsK+ 1 (B(BX 1X2X3t))tK ~

sk[Bsk+1 (B(BX1X2X3t))] ~

BsK(BtK+ 1) (B(BX 1X2X3 t)) ~

B(BtK(BtK+ 1))B(BX 1x 2x 3t) ~

B (B (BtK (B(K+1)) B) (Bx, x2x3) t >

st [B (B (BtK (BsK+1)) B) (Bx, X2X3)] >

Bst [B (B (BsK (BsK+1)) B)] (BX1X2X J) ~

B{Bst[B(B(BsK(BsK+1))B)]}(BX1X2lX3 >

s3[B(Bst[B(B(BsK(BsK+1))B)]}(BX1X2>J ~

(13)

(14)

(15)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(1 3)

B{Bt 3 ~{Btt[B(B(BtK (BtK+ 1)) B)] }] } (BX1) X2 .::_

tEND[B{Bt 3 [B{Btt[B(B(Btk(BtK+ 1))B)]}]}(BX 1)]X~

29.

(14)

(15)

(16)

Conducting an analisys for cases as in precedence, the i

nitial step of the induction is satisfied.

3) Case BBV

O-STRATEGY

The first 12 steps are equal as in the case of BW paren

thesis

(13)

that is the final step.

1 - STRATEGY

The first 12 steps are equal as in the case of BW paren

thesis

(13)

In this case too, for all possible subcases the first step
I

of the induction is proved.

GENERIC STEP OF THE INDUCTION

We have to prove that, if the theorem is true for all the

i-strategies, than it is true for all the (i+1)-strategies.

Let's consider the expression preceeding the last step in

which a (i+1)-strategy choiches a parenthesis that is not the

last one.

Let's compare the (i+1)-strategy from this step to the final

30.

one and the i-strategy that at this step and always in the

future choiches the last free parenthesis. Only the three

preceeding cases can verify and so no (i+1)-strategy can

be shorter than a i--strategy.

Q.E.D.

As a consequence of theorem 4.1, we may notice that, if

wx 1 ... xn::_X and w·•x 1 ... xn.:..X', where X,X'cl({B}) and w,w'c
{B}+:

(i) if X' has a lower number of parentheses to be elimi

nated (*) than X, then SL(w')<SL(w);

(ii) if X' is obtained from X by moving on the left one

couple of parentheses of X to be eliminated, then

SL(w')<SL(w).

We can also establish the following:

Theorem 4.2. - For any X in L({B}) such that SL(X)=n(**)

we have that if WE:{B}+ corresponds to X, then SL(w)=0(n).

Proof. The structure of X such that Xcl({B}) and SL(X)~n,

in which there is the minimum number (1) of parentheses

to be eliminated, is of the form:

On the other hand, the structure of X such that vrL({B})
Ir

.land SL(X)=n,in which there is the maximum number of pare~

theses to be eliminated and these are in the rightmost p~

sition, is of the form:

(*) ~e suppose all parentheses to be eliminated are explicited.

(**) The definitions of structural complexity obviously can be exten
ded to pure combinations.

31.

x' = x
1

(x 2 (... (X
1

X) •••)) • n n- n

It can be easily verified that: if w x1··-X >X, then w +1=Bw; n n- n n n

if w x, .. x >X ,then w +1=B(Bw)B; n n- n n n

Q.E.D.

REFERENCES

[1] H.B. CURRY, R. FEYS: Combinatory logic, vol. 1, North

Holland, 1974.

[2] G. AUSIELLO: Computational complexity - Main results

and a commentary, S~minaires IRIA, 1972.

[3] H.R. STRONG: Depth-bounded computation, JCSS, Vol. 4,

n. 1, 1970.

[4] H.B. CURRY, J.R. HINDLEY, J.P. SELDIN: Combinatory lo

gic, vol. 2, North Holland, 1972.

[5] M. BLUM: On the size of machines, Information and Con

trol 2, 1967.

[6] M. BLUM: A machine independent theory of the complexity

of recursive functions, J.A.C.M. 14, April 1967.

[7] G. AUSIELLO: Abstract computational complexity and cy

cling computations, J.C.S.S. Vol. 5, 1971.

[s] H. BARENDREGT: Normed uniformly reflexive structure,

(in these proceedings).

[9] C. BOHM, W. GROSS: Introduction to the CUCH, Automata

Theory (ed. Caianiello) N.Y., 1966.

[10] A. GRZEGORCZYK: Some classes of l'ecursive functions,

Rozprawy Matematyczne, 1953.

[11] P. ROSENBLOOM: The elements of mathematical logic, Do

ver, 1950.

Finito di stampare nel Luglio 1975
dall 'Artigiana Multistampa Snc

Via Mecenate 20 - Roma

