Numerical Integration by Simpson's 1/3 and 3/8 Rules
Numerical Integration by Simpson's 1/3 and 3/8 Rules
Definite integrals can be approximated using numerical methods such as Simpson’s rule. A better approximation is obtained as you increase , the number of subintervals.
n
Let and =a+kh, where , and set =f().
h=(b-a)/n
x
k
k=0,1,2,…,n
y
k
x
k
Simpson's 1/3 rule: f(x)dx≈A=++4+2.
b
∫
a
h
3
y
0
y
n
n-1
∑
i=1,iodd
y
i
n-2
∑
i=2,ieven
y
i
Simpson's 3/8 rule: f(x)dx≈B=(++3(++++⋯++)+2(++⋯+)).
b
∫
a
3h
8
y
0
y
n
y
1
y
2
y
4
y
5
y
n-2
y
n-1
y
3
y
6
y
n-3
In the graphic, approximations for a given are computed using the two rules and compared with the exact value of the integral.
n
Permanent Citation
Permanent Citation
Rinashini Arunasalam
"Numerical Integration by Simpson's 1/3 and 3/8 Rules"
http://demonstrations.wolfram.com/NumericalIntegrationBySimpsons13And38Rules/
Wolfram Demonstrations Project
Published: August 2, 2016