Trisecting an Angle with a Limaçon
Trisecting an Angle with a Limaçon
The graph of a limaçon in polar coordinates is ; it can be constructed geometrically. Let be a ray with polar angle . Produce this line and determine point the so that . Then .
r=b+2cos(ϕ)
OP
ϕ
A
AP=b
r=OA=2cos(ϕ)+b
A limaçon with can be used to trisect angles. Choose the angle so that one leg intersects the limaçon at .
b=1
α
A
Since the triangle is isosceles, . Since the triangle is also isosceles, . So , or .
OSP
∠PST=2ϕ=α+∠ASP
SAP
ϕ=2∠ASP
4∠ASP=α+∠ASP
∠ASP=α/3
Details
Details
Isaac Newton used a limaçon to trisect an angle.
References
References
[1] T. Iwamoto. "Trisection Using Special Curves." (Nov 22, 2006) www.takayaiwamoto.com/Greek_Math/Trisect/Special_Curves/Special_Curves_Tri.html.
External Links
External Links
Permanent Citation
Permanent Citation
Izidor Hafner
"Trisecting an Angle with a Limaçon"
http://demonstrations.wolfram.com/TrisectingAnAngleWithALimacon/
Wolfram Demonstrations Project
Published: September 28, 2012