WOLFRAM NOTEBOOK

In[]:=
medals={{"CountryA",10,5,1},{"CountryB",8,7,3},{"CountryC",6,9,4},{"CountryD",7,6,2},{"CountryE",15,4,2},{"CountryF",3,12,8},{"CountryG",9,3,5},{"CountryH",4,10,6},{"CountryI",5,8,7},{"CountryJ",11,2,3}};numCountries=Length[medals];
(*OPTIMIZATIONFUNCTION*)(*maximize=truemeansfindmaxrank,falsemeansminrank*)OptimizeRank[k_Integer,maximize_:True]:=Module[{wG,wS,scores,zVars,M=10^6,epsilon=1,obj,vars,cons,solution},(*Definethevariables*)wG=Symbol["wG"];(*Defineweightsassymbolic*)wS=Symbol["wS"];scores=Table[wG*medals[[i,2]]+wS*medals[[i,3]]+medals[[i,4]],{i,numCountries}];zVars=Table[If[ik,z[i],Sequence[]],{i,numCountries}];(*Definezvariablesforallcountriesexceptk*)(*Constraints*) cons=Join[Flatten[Table[If[ik,{scores[[i]]scores[[k]]+epsilon-M*(1-z[i]),scores[[i]]scores[[k]]+M*z[i]},Nothing],{i,numCountries}]],Flatten[Table[If[ik,{0z[i]1},Nothing],{i,numCountries}]],{1wS20,wSwG20}];(*Objectivefunction*)obj=If[maximize,-1,1]*(Total[Table[If[ik,z[i],0],{i,numCountries}]]+1);(*Negateformaximization,asLinearOptimizationminimizesbydefault*)vars=Join[{wG,wS},Table[If[ik,z[i]Integers,Nothing],{i,numCountries}]]; (*Solvetheoptimizationproblem*)solution=LinearOptimization[obj,cons,vars]; (*uncommentifyouwanttheactualweights*) (*{If[maximize,-1,1]*obj/.solution,solution}*) If[maximize,-1,1]*obj/.solution]
In[]:=
(*CADfunction*)FindRankConditions[k_Integer,r_Integer]:=Module[{scores,zVars,booleanExpressions,totalConstraint,allExpressions,result,wG,wS,n},  wG=Symbol["wG"];(*Defineweightsassymbolic*)wS=Symbol["wS"];  scores=Table[wG*medals[[i,2]]+wS*medals[[i,3]]+medals[[i,4]],{i,numCountries}];(*Calculatescoresforeachcountry*)  n=Length[medals];(*Numberofcountries*)  zVars=Table[If[ik,z[i],Sequence[]],{i,numCountries}];(*Definezvariablesforallcountriesexceptk*)  booleanExpressions=Table[If[ik,And[Implies[scores[[i]]>scores[[k]],z[i]==1],Implies[scores[[i]]scores[[k]],z[i]==0]],Nothing],{i,Length[scores]}];totalConstraint=Total[Table[If[ik,zVars[[i]],0],{i,numCountries}]]==r-1;(*Addtheconstraintthatthesumofallz[i]r-1*)allExpressions=Flatten[{Select[booleanExpressions,#=!=Nothing&],totalConstraint,{1wS20,wSwG20}}];(*IncludeallconstraintsintheCADcomputation*) result=Reduce[allExpressions,Join[{wS,wG},zVars]];(*Computethecylindricalalgebraicdecomposition*)result/.{_==_Sequence[],z[_]==_Sequence[]}(*Returntheresultwithoutz*)];
In[]:=
Table[OptimizeRank[i,False],{i,numCountries}]
LinearOptimization
:Warning: integer linear programming will use a machine-precision approximation of the inputs.
LinearOptimization
:Warning: integer linear programming will use a machine-precision approximation of the inputs.
LinearOptimization
:Warning: integer linear programming will use a machine-precision approximation of the inputs.
General
:Further output of LinearOptimization::lpip will be suppressed during this calculation.
Out[]=
{2,2,3,6,1,1,3,3,3,2}
In[]:=
Table[OptimizeRank[i,True],{i,numCountries}]
LinearOptimization
:Warning: integer linear programming will use a machine-precision approximation of the inputs.
LinearOptimization
:Warning: integer linear programming will use a machine-precision approximation of the inputs.
LinearOptimization
:Warning: integer linear programming will use a machine-precision approximation of the inputs.
General
:Further output of LinearOptimization::lpip will be suppressed during this calculation.
Out[]=
{8,6,7,10,2,10,10,10,10,8}
In[]:=
OptimizeRank[3,True]
LinearOptimization
:Warning: integer linear programming will use a machine-precision approximation of the inputs.
Out[]=
7
In[]:=
cadOutput=FindRankConditions[7,6]
Out[]=
1wS
14
13
&&
1
3
(-1+6wS)wG<
1
4
(2+5wS)||
14
13
<wS<
13
12
&&
1
3
(-1+6wS)wG4-2wS||wS
13
12
&&wG
11
6
||1<wS
14
13
&&4-2wS<wG<
1
2
(1+3wS)||
14
13
<wS
10
9
&&
1
4
(2+5wS)wG<
1
2
(1+3wS)||
10
9
<wS<
5
3
&&
1
3
(-1+6wS)wG<
1
2
(1+3wS)||
5
3
<wS
61
6
&&
1
2
(1+3wS)wG<
1
3
(-1+6wS)||
61
6
<wS<13&&
1
2
(1+3wS)wG20||(wS13&&wG20)
In[]:=
RegionPlot[cadOutput,{wS,1,20},{wG,1,20},FrameLabel{"Weight of silver (wS)","Weight of gold (wG)"}]
Out[]=
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.