WOLFRAM NOTEBOOK

In[]:=
vvvv=VertexList[TokenEventBisubstitutionGraph[AxiomaticTheoryTWP[AxiomaticTheory["GroupAxioms"]]/.{CircleTimes->SmallCircle,OverTilde[1]->1},1,GraphLayout->"SpringElectricalEmbedding"],_TwoWayRule];
In[]:=
vvvv
Out[]=
a_(b_c_)(a_b_)c_,a_1a_,a_
a_
1,11,a_a_,11a_
a_
,1
a_
a_
1,1(a_b_)((c_
c_
)a_)b_,a_1a_1,a_1(a_b_)
b_
,a_
a_
11,a_
a_
b_
b_
,a_
a_1
1,a_b_(a_b_)1,a_(11)a_,a_(1b_)a_b_,a_(1b_)(a_(c_
c_
))b_,a_(
a_
1)1,a_(
a_
b_)1b_,a_(b_1)a_b_,a_(b_1)(a_b_)(c_
c_
),a_(b_
b_
)a_,a_(b_
a_b_
)1,a_(b_c_)a_(b_c_),a_(b_c_)(a_b_)(c_1),a_(b_c_)(a_(b_1))c_,a_(b_c_)((a_1)b_)c_,a_(b_c_)((a_b_)1)c_,a_(b_c_)((a_b_)c_)1,a_(b_(c_1))(a_b_)c_,a_(b_(c_
c_
))(a_b_)1,a_(b_(c_d_))(a_(b_c_))d_,a_(b_(c_d_))((a_b_)c_)d_,a_(b_(c_(d_e_)))(a_b_)((c_d_)e_),a_(b_((c_d_)e_))(a_b_)(c_(d_e_)),a_((b_1)c_)(a_b_)c_,a_((b_
b_
)c_)(a_1)c_,a_((b_c_)1)(a_b_)c_,a_((b_c_)d_)(a_b_)(c_d_),a_((b_c_)d_)((a_b_)c_)d_,a_((b_(c_d_))e_)(a_((b_c_)d_))e_,a_(((b_c_)d_)e_)(a_(b_(c_d_)))e_,(a_1)1a_,(a_1)
a_
1,(a_1)(b_c_)(a_b_)c_,(a_
a_
)11,(a_
a_
)
1
1,(a_
a_
)(b_c_)(1b_)c_,(a_b_)c_(a_b_)c_,(a_b_)(c_d_)(a_(b_c_))d_,(a_(b_c_))1(a_b_)c_,(a_(b_c_))
(a_b_)c_
1,(a_(b_c_))(d_e_)(((a_b_)c_)d_)e_,((a_b_)c_)1a_(b_c_),((a_b_)c_)
a_(b_c_)
1,((a_b_)c_)(d_e_)((a_(b_c_))d_)e_
Function[nott,nott->Position[MatchQ[First[nott]/.Equal->TwoWayRule,#]&/@vvvv,True]]/@notablethms
In[]:=
Rest[AxiomaticTheory["GroupAxioms","NotableTheorems"]]
Out[]=
InverseOfComposite
{a.,b.}
a.b.
b.
a.
,InverseOfInverse
a.
a.
a.,LeftIdentity
a.
1
a.a.,LeftInverse
a.
a.
a.
1
In[]:=
{,#}&/@ResourceFunction["UnformalizeSymbols"][Last/@Flatten[Values[Rest[AxiomaticTheory["GroupAxioms","NotableTheorems"]]]]]/.{CircleTimes->SmallCircle,OverTilde[1]->1}
In[]:=
gnot="inverse of composite",
ab
b
a
,"inverse of inverse",
a
a,{"left identity",1aa},{"left inverse",
a
a1}
Out[]=
inverse of composite,
ab
b
a
,inverse of inverse,
a
a,{left identity,1aa},{left inverse,
a
a1}
In[]:=
Function[nott,nott->Position[MatchQ[First[nott]/.Equal->TwoWayRule,#]&/@vvvv,True]]/@gnot
Out[]=
inverse of composite,
ab
b
a
{},inverse of inverse,
a
a{},{left identity,1aa}{},{left inverse,
a
a1}{}
In[]:=
vvvv=VertexList[TokenEventSubstitutionGraph[AxiomaticTheoryTWP[AxiomaticTheory["GroupAxioms"]]/.{CircleTimes->SmallCircle,OverTilde[1]->1},1,GraphLayout->"SpringElectricalEmbedding"],_TwoWayRule];
In[]:=
vvvv
Out[]=
a_(b_c_)(a_b_)c_,a_1a_,a_
a_
1,11,a_a_,a_1a_1,a_
a_
11,a_
a_
b_
b_
,a_
a_1
1,a_(11)a_,a_(
a_
1)1,a_(b_
b_
)a_,a_(b_c_)a_(b_c_),a_(b_c_)(a_b_)(c_1),a_(b_c_)(a_(b_1))c_,a_(b_c_)((a_1)b_)c_,a_(b_c_)((a_b_)1)c_,a_(b_c_)((a_b_)c_)1,a_(b_(c_1))(a_b_)c_,a_((b_1)c_)(a_b_)c_,a_((b_c_)1)(a_b_)c_,(a_1)1a_,(a_1)
a_
1,(a_1)(b_c_)(a_b_)c_,(a_
a_
)11,(a_b_)c_(a_b_)c_,(a_(b_c_))1(a_b_)c_
In[]:=
Function[nott,nott->Position[MatchQ[First[nott]/.Equal->TwoWayRule,#]&/@vvvv,True]]/@gnot
Out[]=
inverse of composite,
ab
b
a
{},inverse of inverse,
a
a{},{left identity,1aa}{},{left inverse,
a
a1}{}
In[]:=
VertexCount[TokenEventBisubstitutionGraph[AxiomaticTheoryTWP[AxiomaticTheory["GroupAxioms"]]/.{CircleTimes->SmallCircle,OverTilde[1]->1},1,GraphLayout->"SpringElectricalEmbedding"],_TwoWayRule]
Out[]=
56
In[]:=
VertexCount[TokenEventSubstitutionGraph[AxiomaticTheoryTWP[AxiomaticTheory["GroupAxioms"]]/.{CircleTimes->SmallCircle,OverTilde[1]->1},1,GraphLayout->"SpringElectricalEmbedding"],_TwoWayRule]
Out[]=
27
In[]:=
vvvg2=VertexList[TokenEventBisubstitutionGraph[AxiomaticTheoryTWP[AxiomaticTheory["GroupAxioms"]]/.{CircleTimes->SmallCircle,OverTilde[1]->1},2,"PatternTest"->(LeafCount[symbolifyPatterns[#]]<9&),GraphLayout->"SpringElectricalEmbedding"],_TwoWayRule];
In[]:=
Length[vvvg2]
Out[]=
466
In[]:=
Function[nott,nott->Position[MatchQ[First[nott]/.Equal->TwoWayRule,#]&/@vvvg2,True]]/@gnot
Out[]=
inverse of composite,
ab
b
a
{},inverse of inverse,
a
a{},{left identity,1aa}{},{left inverse,
a
a1}{}
In[]:=
vvvg2=VertexList[TokenEventBisubstitutionGraph[AxiomaticTheoryTWP[AxiomaticTheory["GroupAxioms"]]/.{CircleTimes->SmallCircle,OverTilde[1]->1},2,"PatternTest"->(LeafCount[symbolifyPatterns[#]]<10&),GraphLayout->"SpringElectricalEmbedding"],_TwoWayRule];
In[]:=
Length[vvvg2]
Out[]=
714
In[]:=
Function[nott,nott->Position[MatchQ[First[nott]/.Equal->TwoWayRule,#]&/@vvvg2,True]]/@gnot
Out[]=
inverse of composite,
ab
b
a
{},inverse of inverse,
a
a{},{left identity,1aa}{},{left inverse,
a
a1}{}
In[]:=
FindEquationalProof[#,"GroupAxioms","ProofGraph"]&/@AxiomaticTheory["GroupAxioms","NotableTheorems"]
Out[]=
ImpliesMcCuneAxioms
,InverseOfComposite
,InverseOfInverse
,LeftIdentity
,LeftInverse
In[]:=
vvvg2=VertexList[TokenEventBisubstitutionGraph[AxiomaticTheoryTWP[AxiomaticTheory["GroupAxioms"]]/.{CircleTimes->SmallCircle,OverTilde[1]->1},2,"PatternTest"->(LeafCount[symbolifyPatterns[#]]<11&),GraphLayout->"SpringElectricalEmbedding"],_TwoWayRule];
Out[]=
$Aborted
In[]:=
Length[vvvg2]
Out[]=
714
In[]:=
Function[nott,nott->Position[MatchQ[First[nott]/.Equal->TwoWayRule,#]&/@vvvg2,True]]/@gnot
Out[]=
inverse of composite,
ab
b
a
{},inverse of inverse,
a
a{},{left identity,1aa}{},{left inverse,
a
a1}{}
In[]:=
Magnify[VertexReplace[TokenEventSubstitutionGraph[AxiomaticTheoryTWP[AxiomaticTheory["AbelianGroupAxioms"]]/.{CircleTimes->SmallCircle,OverTilde[1]->1},1,"EventDeduplication"->True,"TokenLabeling"->True,GraphLayout->"SpringElectricalEmbedding"],v:Except[_List]:>(Row[{#1," = ",#2}]&@@symbolifyPatterns[v])],.8]
Out[]=
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.