In[]:=
g[x_]=x^(1/x);t=(Timing[t10k=-(INIntegrate[(g[(1+tI)])/(Exp[Pit]),{t,0,Infinity},WorkingPrecision10000,Method"Trapezoidal",MaxRecursion13]+I/Pi)])[[1]];t
Out[]=
3250.55
In[]:=
N[test-t10k,10000]
Out[]=
0.×+0.×
-10001
10
-10001
10
Out[]=
0.×
-10001
10
0``-0.49714987269413446
60, 000 18
Syntax::sntxf: 60 cannot be followed by , 000 15.
Out[]=
0
In[]:=
g[x_]=x^(1/x);t=Timing[t10k=-(INIntegrate[(g[(1+tI)])/(Exp[Pit]),{t,0,Infinity},WorkingPrecision10000,Method"Trapezoidal",MaxRecursion12]+I/Pi)][[1]];t
Out[]=
695.688
In[]:=
N[t10k-test,20]
Out[]=
-7.2038809926161842×-8.0907465373258423523×
-8278
10
-8275
10
MaxRecursionguidemaxdigitsM.R.1309default2410104453118275121544213289321454286151026001619391417
In[]:=
g[x_]=x^(1/x);t=Timing[t1309=-(INIntegrate[(g[(1+tI)])/(Exp[Pit]),{t,0,Infinity},WorkingPrecision1309,Method"Trapezoidal",MaxRecursion9]+I/Pi)][[1]];t
Out[]=
2.32813
In[]:=
g[x_]=x^(1/x);t=Timing[t2410=-(INIntegrate[(g[(1+tI)])/(Exp[Pit]),{t,0,Infinity},WorkingPrecision2410,Method"Trapezoidal",MaxRecursion10]+I/Pi)][[1]];t
Out[]=
13.8906
In[]:=
N[t2410-test,20]
Out[]=
-1.×-1.03×
-2410
10
-2408
10
In[]:=
g[x_]=x^(1/x);t=Timing[t4453=-(INIntegrate[(g[(1+tI)])/(Exp[Pit]),{t,0,Infinity},WorkingPrecision4453,Method"Trapezoidal",MaxRecursion11]+I/Pi)][[1]];t
Out[]=
52.75
In[]:=
N[t4453-test,20]
Out[]=
0.×+2.×
-4454
10
-4453
10
In[]:=
g[x_]=x^(1/x);t=Timing[t8p182k=-(INIntegrate[(g[(1+tI)])/(Exp[Pit]),{t,0,Infinity},WorkingPrecision8182,Method"Trapezoidal",MaxRecursion12]+I/Pi)][[1]];t
Out[]=
377.328
In[]:=
N[t8p182k-test,20]
Out[]=
0.×+0.×
-8183
10
-8183
10
In[]:=
g[x_]=x^(1/x);t=Timing[t154424=-(INIntegrate[(g[(1+tI)])/(Exp[Pit]),{t,0,Infinity},WorkingPrecision15442,Method"Trapezoidal",MaxRecursion13]+I/Pi)][[1]];t
Out[]=
3536.61
In[]:=
N[t154424-test,20]
Out[]=
0.×-1.×
-15443
10
-15442
10
In[]:=
g[x_]=x^(1/x);t=Timing[t28932=-(INIntegrate[(g[(1+tI)])/(Exp[Pit]),{t,0,Infinity},WorkingPrecision28932,Method"Trapezoidal",MaxRecursion14]+I/Pi)][[1]];t
Out[]=
17751.6
In[]:=
N[t28932-test,20]
Out[]=
2.×+1.8333×
-28932
10
-28928
10
In[]:=
g[x_]=x^(1/x);t=Timing[t54286=-(INIntegrate[(g[(1+tI)])/(Exp[Pit]),{t,0,Infinity},WorkingPrecision54286,Method"Trapezoidal",MaxRecursion15]+I/Pi)][[1]];t
Out[]=
112226.
In[]:=
N[t54286-test,20]
Out[]=
0.×+0.×
-54287
10
-54287
10
In[]:=
Precision[FM2200K]
Out[]=
199999.
In[]:=
g[x_]=x^(1/x);t=Timing[t250000=-(INIntegrate[(g[(1+tI)])/(Exp[Pit]),{t,0,Infinity},WorkingPrecision250000,Method"Trapezoidal",MaxRecursion18]+I/Pi)][[1]];t
Out[]=
$Aborted
Out[]=
13.2344
N[t250000-FM2200K,20]
In[]:=
g[x_]=x^(1/x);t=Timing[t10k=-(INIntegrate[(g[(1+tI)])/(Exp[Pit]),{t,0,Infinity},WorkingPrecision3000,Method"Trapezoidal",MaxRecursion10]+I/Pi)][[1]];t
Out[]=
13.2344
In[]:=
N[FM2200K=FM2200K-2/PiI]
Out[]=
0.070776-0.684
In[]:=
N[t10k-FM2200K]
Out[]=
0.+0.
In[]:=
g[x_]=x^(1/x);t=Timing[t60k=-(INIntegrate[(g[(1+tI)])/(Exp[Pit]),{t,0,Infinity},WorkingPrecision60000,Method"Trapezoidal",MaxRecursion18]+I/Pi)][[1]];t
Compare with 40,000