Partial sums of the MRB constant

Obtain several digits of m from the cloud

In[]:=
m=WolframAlpha["MRB constant",{{"DecimalApproximation",1},"ComputableData"},PodStates{"DecimalApproximation__More digits"}];

Brute force for 60 terms gives only 2 digits

f[n_]:=(-1)^n(n^(1/n)-1);a1=(m-NSum[f[n],{n,1,60},Method"AlternatingSigns",WorkingPrecision100])
Out[]=
-0.03508058312888533476029149152413305701285431849013881336109994374863959009392347441816059869179541

Van Wijngaarden transformation for 60 terms give around 4 digits

f[n_]:=(-1)^n(n^(1/n)-1);g[n_]:=f[n+1];m-NSum[(g[n]+f[n])/2,{n,1,60},Method"AlternatingSigns",WorkingPrecision100]
Out[]=
-0.0002235554251167115653241529678883538450873340383873767965854185185546751063897016113494197187047609

Euler’s transform for 60 terms gives 22 digits

N[m-Sum[
-(n+1)
2
k
(-1)
Binomial[n,k-1]
1/k
k
,{n,60},{k,n+1}],30]//Timing
Out[]=
{0.03125,-3.72569817451617981829539904872×
-22
10
}

An integral from 1 to only 6*I gives 9 digits

m+NIntegrate(
1/x
x
-1)Sin[Pi*x],{x,1,6I},WorkingPrecision->100//Im
Out[]=
1.5311525834464219175000053646095293386748535923195480774528784225182384285458621955030374600×
-9
10

Obtain several digits of m from the cloud

In[]:=
m=WolframAlpha["MRB constant",{{"DecimalApproximation",1},"ComputableData"},PodStates{"DecimalApproximation__More digits","DecimalApproximation__More digits","DecimalApproximation__More digits","DecimalApproximation__More digits","DecimalApproximation__More digits"}];
m//Precision
Out[]=
2514.

The same integral from 1 to only 60*I gives 84 digits

m+NIntegrate(
1/x
x
-1)Sin[Pi*x],{x,1,60I},WorkingPrecision->200//Im

Crandall’s First formula for 60 terms gives 111 digits

c1=ActivateLimit
n
(-1)
n!
Derivative[n][DirichletEta][x]/.n1,x1,Unevaluated[Sum]
In[]:=
f1[n_]:=
n
(-1)
n!
Derivative[n][DirichletEta][n];
m+(c1+Sum[N[f1[n],150],{n,2,60}])
Out[]=
-4.4991140943357666465094281289401584760306×
-111
10

Burns’ program for Crandall’s First formula for 60 terms also gives 111 digits

p=60;prec=4p;​​​​etaMM[m_,pr_]:=Block[{a,s,k,b,c,jj,p,q},a[j_]:=(jj=j+1;{p,q}={Log[SetPrecision[jj,prec]]^m,Power[jj,m]};p/q);​​{b,c,s}={-1,-d,0};​​Do[c=b-c;​​s=s+ca[k];​​b=(k+n)(k-n)b/((k+1)(k+1/2)),{k,0,n-1}];​​Return[N[s/d,pr](-1)^m]];​​eta1=N[EulerGammaLog[2]-Log[2]^2/2,prec];n=Floor[132/100prec];d=N[ChebyshevT[n,3],prec];​​MRBtest=eta1-Total[ParallelCombine[((Cos[Pi#])etaMM[#,prec]/N[Gamma[#+1],prec])&,Range[2,Floor[p]],Method->"CoarsestGrained"]];​​Print[N[m-MRBtest,10]];​​
In[]:=
m=WolframAlpha["MRB constant",{{"DecimalApproximation",1},"ComputableData"},PodStates{"DecimalApproximation__More digits","DecimalApproximation__More digits","DecimalApproximation__More digits","DecimalApproximation__More digits","DecimalApproximation__More digits","DecimalApproximation__More digits"}];
Precision[m]
Out[]=
4999.27
48/25.
Out[]=
1.92

Burns’ program for Crandall’s First formula for 960 terms gives 2871 digits

p=960;prec=4p;​​​​etaMM[m_,pr_]:=Block[{a,s,k,b,c,jj,p,q},a[j_]:=(jj=j+1;{p,q}={Log[SetPrecision[jj,prec]]^m,Power[jj,m]};p/q);​​{b,c,s}={-1,-d,0};​​Do[c=b-c;​​s=s+ca[k];​​b=(k+n)(k-n)b/((k+1)(k+1/2)),{k,0,n-1}];​​Return[N[s/d,pr](-1)^m]];​​eta1=N[EulerGammaLog[2]-Log[2]^2/2,prec];n=Floor[132/100prec];d=N[ChebyshevT[n,3],prec];​​MRBtest=eta1-Total[ParallelCombine[((Cos[Pi#])etaMM[#,prec]/N[Gamma[#+1],prec])&,Range[2,Floor[p]],Method->"CoarsestGrained"]];​​Print[N[m-MRBtest,10]];​​

Obtain even more digits of m from the cloud

m//Clear;CloudGet["https://www.wolframcloud.com/obj/ed331fd0-6500-46bf-bb3b-c32faadec459"];m//Precision
Out[]=
10100.

Burns’ second program for Crandall’s First formula for 960 terms also gives 2871 digits

1000(1.+M)/2/960
Out[]=
25
48
(1.+M)
terms=960;prec=terms126/20;​​(**Numberofrequireddecimals.*.*)ClearSystemCache[];​​T0=SessionTime[];​​expM[pre_]:=Module{lg,a,d,s,k,bb,c,end,iprec,xvals,x,pc,cores=16(*=4*numberofphysicalcores*),tsize=2^7,chunksize,start=1,ll,ctab,pr=Floor[1.0002pre]},chunksize=cores*tsize;​​(*AbovewecomputedtheneededratiotomatchCrandall'sconvergentrate,andmisitselfthebestchoiceoffractionalvaluetoaddto1.toarivethereexactly.*)n=Floor
25
48
(1.`+m)pr;​​end=Ceiling[n/chunksize];​​Print["Using ",pr," decimals of precision, "];​​d=ChebyshevT[n,3];​​{b,c,s}={SetPrecision[-1,1.1*n],-d,0};​​iprec=pr2^6;​​Do[xvals=Flatten[ParallelTable[Table[ll=start+j*tsize+l;​​lg=Log[ll]/(ll);x=N[E^(lg),iprec];​​pc=iprec;​​While[pc<pr,pc=Min[4pc,pr];​​x=SetPrecision[x,pc];​​xll=x^ll;z=(ll-xll)/xll;​​t=2ll-1;t2=t^2;​​x=x*(1+SetPrecision[4.5,pc](ll-1)/t2+(ll+1)z/(2llt)-SetPrecision[13.5,2pc]ll(ll-1)/(3llt2+t^3z))];​​x-lg,{l,0,tsize-1}],{j,0,cores-1},Method->"EvaluationsPerKernel"->16]];​​ctab=ParallelTable[Table[c=b-c;​​ll=start+l-2;​​b*=2(ll+n)(ll-n)/((ll+1)(2ll+1));​​c,{l,chunksize}],Method->"EvaluationsPerKernel"->16];​​s+=ctab.(xvals-1);​​start+=chunksize;​​st=SessionTime[]-T0;kc=k*chunksize;,{k,0,end-1}];​​N[-s/d,pr];​​t2=Timing[MRBeta2toinf=expM[prec];];​​Print[terms," terms gave ",-Log10[N[m-MRBeta2toinf+Log[2]^2/2-EulerGammaLog[2],200]]//Re//Floor," digits."]​​​​​​​​

Burns’ second program for Crandall’s First formula for 1000 terms gives 2990 digits

The above-used integral from 1 to 1000*I gives around 523 digits