CMRB=0.18785964246206712024...
n=1or25.65665403510586285599...
g(x_)=;Imt=CMRB.
n/x
x
-1
2
∞
∫
(-∞)
g(1-t)
sin(πt)
g(x_)=;Imt=CMRB.
n/x
x
1
2
∞
∫
(-∞)
g(1+t)
sin(πt)
g(x_)=;Imt=CMRB.
n/x
x
1
4
∞
∫
(-∞)
g(t+1)-g(1-t)
sin(πt)
In[]:=
n={1,25.6566540351058628559907};
In[]:=
g[x_]=x^(n/x);-1/2Im[N[NIntegrate[(g[(1-t)])/(Sin[πt]),{t,-InfinityI,InfinityI},WorkingPrecision60],20]]
Out[]=
{0.18785964246206712025,0.18785964246206712025}
In[]:=
g[x_]=x^(n/x);1/2Im[N[NIntegrate[(g[(1+t)])/(Sin[πt]),{t,-InfinityI,InfinityI},WorkingPrecision60],20]]
Out[]=
{0.18785964246206712025,0.18785964246206712025}
In[]:=
g[x_]=x^(n/x);1/4Im[N[NIntegrate[(g[(1+t)]-(g[(1-t)]))/(Sin[πt]),{t,-InfinityI,InfinityI},WorkingPrecision60],20]]
Out[]=
{0.18785964246206712025,0.18785964246206712025}
In[]:=
g[x_]=x^(1/x);CMRB=NSum[(-1)^k(g[k]-1),{k,1,Infinity},WorkingPrecision->100,Method->"AlternatingSigns"];a=0;b=I;g[x_]=x^(1/x);v=;PrintCMRB--NIntegrate,{t,a,b},WorkingPrecision->100;Clear[a,b]
t
1+t+t
Re[Csc[Pi/v]]
-v
v
2
t
-9.3472×
-94
10
v=;CMRB=(-1)=-t=(-)t.
t
t+t+1
∞
∑
k=1
k
(-1)
1/k
k
∫
0
Recsc
-v
v
π
v
2
t
1
2
∞
∫
(-∞)
Recsc
-v
v
π
v
2
t
v=;CMRB=(-1)=(-)t.
t
t+t+1
∞
∑
k=1
k
(-1)
1/k
k
1
2
∞
∫
(-∞)
Recsc
-v
v
π
v
2
t
v=;CMRB=(-1)=-t
t
t+t+1
∞
∑
k=1
k
(-1)
1/k
k
∫
0
Recsc
-v
v
π
v
2
t
g(x_)=;Imt=CMRB.
1/x
x
1
4
∞
∫
(-∞)
g(t+1)-g(1-t)
sin(πt)
In[]:=
g[x_]=x^(1/x);CMRB=NSum[(-1)^k(g[k]-1),{k,1,Infinity},WorkingPrecision->100,Method->"AlternatingSigns"];a=-InfinityI;b=InfinityI;g[x_]=x^(1/x);(v=t/(1+t+tI);Print[CMRB-(-I/2NIntegrate[Re[v^-vCsc[Pi/v]]/(t^2),{t,a,b},WorkingPrecision->100])]);Clear[a,b]
-9.3472×
-94
10
In[]:=
CMRB-(-INIntegrate[Re[v^-vCsc[Pi/v]]/(t^2),{t,0,InfinityI},WorkingPrecision->100]+INIntegrate[Re[v^-vCsc[Pi/v]]/(t^2),{t,I,InfinityI},WorkingPrecision->100])
Out[]=
-9.3472×
-94
10
CMRB=-t-t
∞
∫
Recsc
-v
v
π
v
2
t
∞
∫
0
Recsc
-v
v
π
v
2
t
In[]:=
CMRB-(-INIntegrate[Re[v^-vCsc[Pi/v]]/(t^2),{t,0,I},WorkingPrecision->100])
Out[]=
-9.3472×
-94
10
CMRB=-t
∫
0
Recsc
-v
v
π
v
2
t
CMRB=-t-t=-t
∞
∫
Recsc
-v
v
π
v
2
t
∞
∫
0
Recsc
-v
v
π
v
2
t
∫
0
Recsc
-v
v
π
v
2
t
In[]:=
1/-I
Out[]=
g(x_)=;v=;CMRB=t-t=t.
1/x
x
t
t+t+1
∞
∫
Recsc
-v
v
π
v
2
t
∞
∫
0
Recsc
-v
v
π
v
2
t
∫
0
Recsc
-v
v
π
v
2
t
CMRB=(-1)
∞
∑
k=1
k
(-1)
1/k
k
In[]:=
g[x_]=x^(1/x);CMRB=NSum[(-1)^k(g[k]-1),{k,1,Infinity},WorkingPrecision->100,Method->"AlternatingSigns"];a=-InfinityI;b=InfinityI;g[x_]=x^(1/x);v=;PrintCMRB--2NIntegrate,{t,a,b},WorkingPrecision->100;Clear[a,b]
t
1+t+t
Re[Csc[Pi/v]]
-v
v
2
t
-9.3472×
-94
10
1
2
∞
∫
(-∞)
Recsc
-v
v
π
v
2
t
In[]:=
g[x_]=x^(1/x);CMRB=NSum[(-1)^k(g[k]-1),{k,1,Infinity},WorkingPrecision->100,Method->"AlternatingSigns"];a=0;b=I;g[x_]=x^(1/x);v=;PrintCMRB--NIntegrate,{t,a,b},WorkingPrecision->1000;Clear[a,b]
t
1+t+t
Re[Csc[Pi/v]]
-v
v
2
t
-9.3472×
-94
10
In[]:=
CMRB=NSum[(-1)^k(g[k]-1),{k,1,Infinity},WorkingPrecision->1000,Method->"AlternatingSigns"];
In[]:=
CMRB-N-NIntegrate,{t,0,},WorkingPrecision->2000,1000
Re[Csc[Pi/v]]
-v
v
2
t
-2051
10
Out[]=
1.136904579174515915810652944398114538901009851043650092031804195061599764129×
-923
10