In[]:=
Needs["SubKernels`LocalKernels`"];Needs["SubKernels`RemoteKernels`"];​​Block[{$mathkernel=$mathkernel<>" -threadpriority=2"},LaunchKernels[]]
LinkObject
:Unable to communicate with closed link LinkObject["C:\Program Files\Wolfram Research\gridMathematica Server\11.3\WolframKernel" -noicon -subkernel -noinit -nopaclet -wstp -threadpriority=2,140,19].
LinkObject
:Unable to communicate with closed link LinkObject["C:\Program Files\Wolfram Research\gridMathematica Server\11.3\WolframKernel" -noicon -subkernel -noinit -nopaclet -wstp -threadpriority=2,141,20].
LinkObject
:Unable to communicate with closed link LinkObject["C:\Program Files\Wolfram Research\gridMathematica Server\11.3\WolframKernel" -noicon -subkernel -noinit -nopaclet -wstp -threadpriority=2,144,23].
General
:Further output of LinkObject::linkd will be suppressed during this calculation.
Parallel`Developer`ConnectKernel
::failinit
:8 of 24 kernels failed to initialize.
​
Parallel`Developer`ConnectKernel
::failinit
:1 of 16 kernels failed to initialize.
​
LightweightGridClient`RemoteKernelClose
::nokernel
:Kernel could not be closed because no kernel was found for the given link "
second
.
​
Out[]=
{KernelObject[1,local],KernelObject[2,local],KernelObject[3,local],KernelObject[4,local],KernelObject[5,local],KernelObject[6,local],KernelObject[7,local],KernelObject[8,local],KernelObject[9,local],KernelObject[10,local],KernelObject[11,local],KernelObject[12,local],KernelObject[15,local],KernelObject[16,local],KernelObject[18,local],KernelObject[19,local],KernelObject[25,first],KernelObject[26,first],KernelObject[27,first],KernelObject[28,first],KernelObject[29,first],KernelObject[30,first],KernelObject[31,first],KernelObject[32,first],KernelObject[33,first],KernelObject[34,first],KernelObject[35,first],KernelObject[36,first],KernelObject[37,first],KernelObject[38,first],KernelObject[39,first],KernelObject[40,first],KernelObject[41,second],KernelObject[42,second],KernelObject[43,second],KernelObject[44,second],KernelObject[45,second],KernelObject[46,second],KernelObject[48,second],KernelObject[49,second],KernelObject[50,second],KernelObject[51,second],KernelObject[52,second],KernelObject[53,second],KernelObject[54,second],KernelObject[55,second],KernelObject[56,second]}
​
In[]:=
Print["Start time is ",ds=DateString[],"."];​​prec=1000000;​​(**Numberofrequireddecimals.*.*)ClearSystemCache[];​​T0=SessionTime[];​​expM[pre_]:=Module[{a,d,s,k,bb,c,end,iprec,xvals,x,pc,cores=16(*=4*numberofphysicalcores*),tsize=2^7,chunksize,start=1,ll,ctab,pr=Floor[1.005pre]},chunksize=cores*tsize;​​n=Floor[1.32pr];​​end=Ceiling[n/chunksize];​​Print["Iterations required: ",n];​​Print["Will give ",end," time estimates, each more accurate than the previous."];​​Print["Will stop at ",end*chunksize," iterations to ensure precsion of around ",pr," decimal places."];d=ChebyshevT[n,3];​​{b,c,s}={SetPrecision[-1,1.1*n],-d,0};​​iprec=Ceiling[pr/186624];​​Do[xvals=Flatten[Parallelize[Table[Table[ll=start+j*tsize+l;​​x=N[E^(Log[ll]/(ll)),iprec];​​pc=iprec;​​While[pc<pr/1024,pc=Min[3pc,pr/1024];​​x=SetPrecision[x,pc];​​y=x^ll-ll;​​x=x(1-2y/((ll+1)y+2llll));];​​(**N[Exp[Log[ll]/ll],pr/1024]**)x=SetPrecision[x,pr/256];​​xll=x^ll;z=(ll-xll)/xll;​​t=2ll-1;t2=t^2;​​x=x*(1+SetPrecision[4.5,pr/256](ll-1)/t2+(ll+1)z/(2llt)-SetPrecision[13.5,pr/256]ll(ll-1)1/(3llt2+t^3z));(*N[Exp[Log[ll]/ll],pr/256]*)x=SetPrecision[x,pr/64];​​xll=x^ll;z=(ll-xll)/xll;​​t=2ll-1;t2=t^2;​​x=x*(1+SetPrecision[4.5,pr/64](ll-1)/t2+(ll+1)z/(2llt)-SetPrecision[13.5,pr/64]ll(ll-1)1/(3llt2+t^3z));(**N[Exp[Log[ll]/ll],pr/64]**)x=SetPrecision[x,pr/16];​​xll=x^ll;z=(ll-xll)/xll;​​t=2ll-1;t2=t^2;​​x=x*(1+SetPrecision[4.5,pr/16](ll-1)/t2+(ll+1)z/(2llt)-SetPrecision[13.5,pr/16]ll(ll-1)1/(3llt2+t^3z));(**N[Exp[Log[ll]/ll],pr/16]**)x=SetPrecision[x,pr/4];​​xll=x^ll;z=(ll-xll)/xll;​​t=2ll-1;t2=t^2;​​x=x*(1+SetPrecision[4.5,pr/4](ll-1)/t2+(ll+1)z/(2llt)-SetPrecision[13.5,pr/4]ll(ll-1)1/(3llt2+t^3z));(**N[Exp[Log[ll]/ll],pr/4]**)x=SetPrecision[x,pr];​​xll=x^ll;z=(ll-xll)/xll;​​t=2ll-1;t2=t^2;​​x=x*(1+SetPrecision[4.5,pr](ll-1)/t2+(ll+1)z/(2llt)-SetPrecision[13.5,pr]ll(ll-1)1/(3llt2+t^3z));(*N[Exp[Log[ll]/ll],pr]*)x,{l,0,tsize-1}],{j,0,cores-1}]]];​​ctab=ParallelTable[Table[c=b-c;​​ll=start+l-2;​​b*=2(ll+n)(ll-n)/((ll+1)(2ll+1));​​c,{l,chunksize}],Method"Automatic"];​​s+=ctab.(xvals-1);​​start+=chunksize;​​st=SessionTime[]-T0;kc=k*chunksize;​​ti=(st)/(kc+10^-4)*(n)/(3600)/(24);​​Print[kc," iterations done in ",N[st,4]," seconds."," Should take ",N[ti,4]," days or ",N[ti*24*3600,4],"s, finish ",DatePlus[ds,ti],"."],{k,0,end-1}];​​N[-s/d,pr]];​​t2=Timing[MRBtest2=expM[prec];];Print["Finished on ",DateString[],". Proccessor time was ",t2[[1]]," s."];Print["Actual time was ",st];​​(*Print[*)MRBtest2(*]*)(*Remove(**)orenterMRBtest2toprintoutput*);Print["Enter MRBtest2 to print ",Floor[Precision[MRBtest2]]," digits"];Print["If you saved m3M, the difference between this and 3,014,991 known digits is ",N[MRBtest2-m3M,10]]