Sum of a Telescoping Series (II)

​
n
6
The area of each colored region is
n
n+1
-
n-1
n
=
1
n(n+1)
, so
1
1·2
+
1
2·3
+⋯+
1
n(n+1)
=
n
n+1
and
∞
∑
n=1
1
n(n+1)
=1
.

Details

Reference: R. W. Wang, "Proof without Words:
1
1·2
+
1
2·3
+⋯+
1
n(n+1)
=
n
n+1
," Mathematics Magazine, 65(5), 1992 p. 338.

External Links

Series (Wolfram MathWorld)

Permanent Citation

Soledad Mª Sáez Martínez, Félix Martínez de la Rosa
​
​"Sum of a Telescoping Series (II)"​
​http://demonstrations.wolfram.com/SumOfATelescopingSeriesII/​
​Wolfram Demonstrations Project​
​Published: March 7, 2011