Force F(t) that last 10 cycles and angular frequency
ω1
.
Ft=Sin[t]UnitBox
t
20π
;​​​​Plot​​Sin[t],UnitBox
t
20π
,Ft,{t,-15π,15π},​​Frame->True,​​FrameLabel->{"t","F[t]"},​​PlotRange->{{-40,40},{-3/2,3/2}},​​Axes->False,​​GridLines->Automatic,​​PlotStyle->{{LightGray,Dashed},{LightGray,Dashed},}
Out[]=
Compute the Fourier transform of the force:
Fω=FourierTransform[Ft,t,ω]
Out[]=
5
2π
Sinc[10π-10πω]-5
2π
Sinc[10π+10πω]
Plot its absolute value:
AbsFω=Abs[Fω];​​​​Plot[AbsFω,{ω,-2,2},​​Frame->True,​​FrameLabel->{"ω","|

F
​(ω) |"},​​PlotRange->{{-2,2},{0,16}},​​Axes->False,​​GridLines->Automatic​​]
Out[]=
Now, say that applied this force to an underdamped harmonic oscillator of natural frequency
ω
N
1/2
and a quality factor of approximately 20. (The precise value does not matter for our discussion). The expression for
|

G
(ω)|G(ω)
was derived in class.
k=1;​​ωn=1/2;​​ζ=1/40;​​AbsGω=
1
k
1
Sqrt[
2
(1-
2
(ω/ωn)
)
+
2
(2ζω/ωn)
]
;​​​​Plot[AbskGω,{ω,0,2},​​Frame->True,​​FrameLabel->{"ω","k |

G
​(ω) |"},​​PlotRange->{{0,2},{0,21}},​​GridLines->Automatic​​]
Out[]=
To find the (absolute value) of the Fourier domain representation of the position,

x
(ω)
, we multiply the absolute values of the Fourier transformation of the force,

F
(ω)
, and of the response function,

G
(ω)
. In the plot below, we plot the latter two in dashed gray curves, they product is the green curve.
Plot[​​{AbskGω,AbsFω,AbskGω*AbsFω},{ω,0,2},​​Frame->True,​​FrameLabel->{"ω","|

x
​(ω) |"},​​PlotRange->{{0,2},{0,21}},​​GridLines->Automatic,​​PlotStyle->{{LightGray,Dashed},{LightGray,Dashed},}​​]
Out[]=