

Circuit Techniques for 1.5–3.6-V Battery-Operated 64-Mb DRAM

Yoshinobu Nakagome, *Member, IEEE*, Kiyoo Itoh, *Senior Member, IEEE*, Kan Takeuchi, *Member, IEEE*, Eiji Kume, Hitoshi Tanaka, Masanori Isoda, Tatsunori Musha, Toru Kaga, *Member, IEEE*, Teruaki Kisu, Takashi Nishida, Yoshifumi Kawamoto, and Masakazu Aoki, *Member, IEEE*

Abstract—Circuit techniques for battery-operated DRAM's which cover supply voltages from 1.5 to 3.6 V (universal V_{CC}), as well as their applications to an experimental 64-Mb DRAM, are presented. The proposed universal- V_{CC} DRAM concept features a low-voltage (1.5 V) DRAM core and an on-chip power supply unit optimized for the operation of the DRAM. A circuit technique for oxide-stress relaxation is proposed to improve high-voltage sustaining characteristics while only scaled MOSFET's are used in the entire chip. This technique increases sustaining voltage by about 1.5 V when compared with conventional circuits and allows scaled MOSFET's to be used for the circuits, which can be operated from an external V_{CC} of up to 4 V. A two-way power supply scheme is also proposed to suppress the internal voltage fluctuation within 10% when the DRAM is operated from external power supply voltages ranging from 1.5 to 3.6 V. An experimental 1.5–3.6-V 64-Mb DRAM is designed based on these techniques and fabricated by using 0.3- μ m electron-beam lithography. An almost constant access time of 70 ns is obtained over a supply voltage range from 1.5 to 3.6 V. This indicates that battery operation is a promising target for future DRAM's.

I. INTRODUCTION

DYNAMIC random access memories (DRAM's) have been widely used in the electronics field because of their low bit cost among semiconductor memories due to their simple memory cell structure. They have been playing an important role in enhancing the performance and reducing the cost of electronic systems. The density of DRAM's has quadrupled every three years since their advent and has reached 64 Mb [1]. As the density reaches megabytes per chip, demands for DRAM's have become manifold in terms of performance and function. Battery-operated DRAM's are increasingly important in the field of battery-based systems such as notebook type personal computers (PC's) and solid-state discs (SSD's) because of the demand for low-cost and low-power semiconductor memories in such systems. SRAM's have mainly been used for these applications because: 1) the supply voltage

range of DRAM's is smaller than that for SRAM's; 2) DRAM's have relatively poor immunity for V_{CC} fluctuation (V_{CC} bump); and 3) the operating power of DRAM's for data retention as well as for the read/write operation is comparatively large. The first and second problems stem from the strong dependence of signal-to-noise ratio (SNR) on operating voltage. The third problem is mainly due to the charging and discharging of the heavily capacitive data lines required by the refresh operation. One way to solve the third problem is to reduce the operating voltage or data-line swing [1], [2]. However, the other two issues still remain. Solving these problems would make DRAM's widely used in battery-based equipment.

This paper describes circuit techniques in achieving 1.5–3.6-V 64-Mb DRAM's to solve these issues [3]. To cover a wide range of supply voltages, the universal- V_{CC} DRAM concept is proposed. The idea is to employ a low-voltage (1.5 V) operating DRAM core [1] and a two-way power supply unit to regulate the internal operating voltage against external V_{CC} fluctuation. This enables the DRAM to be operated on a variety of batteries having various supply voltage levels as well as on the standard 3.3-V power supply and ensures a stable operation under long-term or short-term supply voltage fluctuation due to the battery characteristics. To achieve reliable operation, a circuit technique to relax the oxide stress of the MOSFET's is proposed. It allows the use of scaled MOSFET's for input/output buffers and the power supply unit. An experimental 1.5–3.6-V 64-Mb DRAM is designed based on these techniques and fabricated by 0.3- μ m electron-beam lithography.

The universal- V_{CC} DRAM concept is described in Section II. The oxide-stress relaxation technique is discussed in Section III. The design and experimental results of the two-way power supply unit are described in Section IV. Finally, the design and performance of an experimental 1.5–3.6-V 64-Mb DRAM employing these techniques are presented.

II. UNIVERSAL- V_{CC} DRAM CONCEPT

A block diagram of the universal- V_{CC} 64-Mb DRAM, which covers supply voltages from 1.5 to 3.6 V, is shown in Fig. 1. The major components of the DRAM are: a

Manuscript received November 3, 1990; revised March 1, 1991.

Y. Nakagome, K. Itoh, K. Takeuchi, T. Kaga, T. Nishida, Y. Kawamoto, and M. Aoki are with the Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan.

E. Kume is with the Shikoku Branch Office, Hitachi Ltd., Matsuyama, Ehime 790, Japan.

H. Tanaka, M. Isoda, T. Musha, and T. Kisu are with the Hitachi VLSI Engineering Corporation, Kodaira, Tokyo 187, Japan.

IEEE Log Number 9100033.

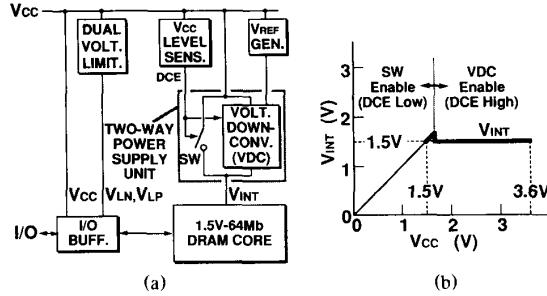


Fig. 1. Concept of universal- V_{CC} DRAM: (a) block diagram of 1.5–3.6-V 64-Mb DRAM and (b) characteristics of two-way power supply unit.

TABLE I
FEATURES OF THE EXPERIMENTAL 1.5–3.6-V 64-Mb DRAM

Organization	16 M Words \times 4 b
Technology	0.3- μ m p-sub Triple-Well CMOS 44-FF Data-Line Shielded STC Cell $T_{OX} = 6.5$ nm $L_N/L_P = 0.5/0.6$ μ m (drawn) 0.35/0.45 μ m (effective) $V_{TN}/V_{TP} = 0.4/-0.4$ V
Cell size	0.8 μ m \times 1.6 μ m = 1.28 μ m ²
Chip size	9.74 mm \times 20.28 mm = 197.5 mm ²
Power supply	1.5–3.6 V (internal 1.5 V)
Access time	simulated $t_{RAC} = 50$ ns (1.5–3.6 V, 25°C) measured $t_{RAC} = 70$ ns (1.5 and 3.3 V, 25°C)
Supply current	Active 29 mA at 1.5 V 35 mA at 3.3 V ($t_{RC} = 180$ ns, 25°C) Standby < 1 mA (1.5 V, 25°C)

1.5-V 64-Mb DRAM core [1]; a dual voltage limiter for oxide-stress relaxation; a two-way power supply unit for the 1.5-V DRAM core; and high-voltage sustaining input/output buffers. One of the keys in achieving the universal- V_{CC} DRAM is the low-voltage operating DRAM core. The 1.5-V 64-Mb DRAM core design is summarized in Table I. A novel crown-shaped stacked capacitor (CROWN) cell was developed to ensure enough storage charge even at 1.5 V [4]. The cell features a cylindrical storage electrode formed on the data line and a CVD-Ta₂O₅ dielectric film with an equivalent thickness of 3 nm [5]. A storage capacitance of more than 40 fF can be obtained even in a cell area of 1.28 μ m². An important feature of the CROWN cell is that the data line is shielded by either the plate or storage layer. Inter-data-line capacitance is thereby minimized, and data-line interference noise is reduced without transposing the pair of data lines [6], [7]. Scaled MOSFET's ($t_{OX} = 6.5$ nm, $L_{eff(min)} = 0.35$ μ m) are used to achieve high-speed performance at 1.5 V. Thus, the 1.5-V DRAM core offers enough SNR and high-speed operation using these process and device technologies. A dual voltage limiter pro-

vides two kinds of limited voltage, V_{LN} and V_{LP} , for n-channel and p-channel MOSFET's, respectively. It enables the voltage applied to all MOSFET's to be suppressed below 2.5 V even when operating with an external supply voltage of 4 V. Scaled MOSFET's with $t_{OX} = 6.5$ nm can be used for input/output buffers and the power supply unit. Internal supply voltage V_{INT} is supplied through a two-way power supply unit which consists of a voltage down converter (VDC) and switch (SW). The reference voltage V_{REF} is the reference input for the VDC. Either the VDC or SW is enabled by the control signal DCE (down converter enable), which is generated by the V_{CC} level sensor. Fig. 1(b) shows the dependence of internal supply voltage V_{INT} on external supply voltage V_{CC} . The voltage down converter works if the operating voltage is high and DCE is high, while the switch is enabled when V_{CC} is decreased to around 1.5 V and DCE is low. It is best to set this switching voltage as low as possible to minimize the V_{INT} fluctuation. The switching of these two means occurs when $V_{CC} = 1.65$ V in this example. By using this two-way power supply scheme, V_{INT} can be controlled within 1.5–1.65 V when supplied from external voltage ranging from 1.5 to 3.6 V. When combining these components, the SNR and operating speed of the DRAM are hardly affected by the external voltage fluctuation. Therefore, this scheme offers a stable and high-speed operation over an operating voltage range of 1.5 to 3.6 V.

III. OXIDE-STRESS RELAXATION TECHNIQUE

One of the issues in designing a universal- V_{CC} DRAM is the insufficient stress voltage sustaining characteristics of scaled MOSFET's tailored to low-voltage operation. It is difficult to achieve both high speed and reliable operation if the maximum operating voltage is two times larger than the minimum value. A dual t_{OX} structure was proposed to solve this problem [8], [9]. However, it complicates both the fabrication process and device design.

The oxide-stress relaxation technique concept using a dual-voltage-limiting scheme is presented in Fig. 2. It differs from the previously proposed hot-carrier suppression technique [10]. Its feature is to relax the stress induced by the large electric field across thin gate oxide as well as that induced by hot carrier. Fig. 2(a) shows the fundamental inverter circuit with a dual-voltage-limiting scheme. It has a symmetrical configuration like a conventional CMOS inverter. When considering the n-channel side, the main differences from a conventional one are the insertion of limiting MOSFET's $Q1$ and $Q3$ to the conventional CMOS inverter, and the output OUTL is obtained from the midpoint of the serially connected MOSFET's $Q1$ and $Q2$, or $Q3$ and $Q4$, to drive the next stage inverter. Limiting voltage for n-channel MOSFET's, V_{LN} , is applied to the gates of limiting n-channel MOSFET's $Q1$ and $Q3$. The p-channel side has the same configuration, and limiting voltage V_{LP} is applied to the gates of limiting p-channel MOSFET's. Note that the

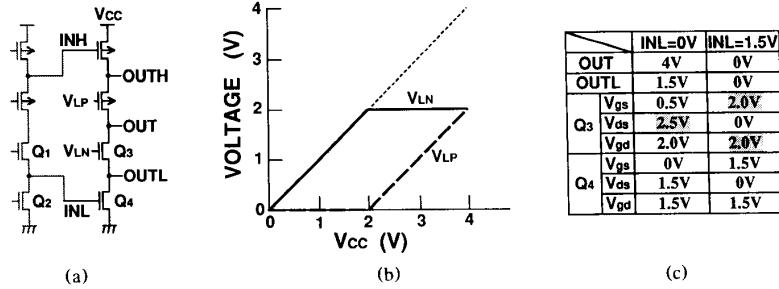


Fig. 2. Dual-voltage-limiting scheme for oxide-stress relaxation: (a) fundamental inverter with dual-voltage-limiting scheme, (b) characteristics of dual voltage limiter, and (c) node voltages for two logic states for $V_{CC} = 4$ V, $V_{LN} = 2$ V, and $V_{TN} = 0.5$ V.

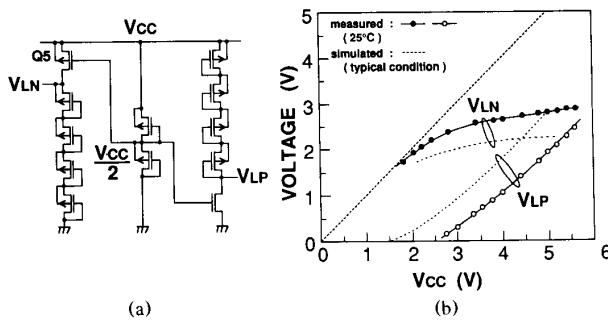


Fig. 3. Dual-limiting-voltage (V_{LN} , V_{LP}) generator: (a) circuit schematic and (b) measured and simulated characteristics.

full-swing output OUT is obtained at the midpoint between n-channel and p-channel MOSFET's. Ideal dc characteristics of limiting voltages V_{LN} and V_{LP} are shown in Fig. 2(b). $V_{LN} = V_{CC}$ and $V_{LP} = 0$ V when $V_{CC} < 2$ V, while $V_{LN} = 2$ V and $V_{LP} = V_{CC} - 2$ V when $V_{CC} > 2$ V. The drain voltage of $Q4$ is limited below $V_{LN} - V_{TN}$ by $Q3$ and the high level of the output OUTL is also limited below $V_{LN} - V_{TN}$. The gate voltage of $Q4$ is also limited below $V_{LN} - V_{TN}$ by $Q1$. To show the effect of this scheme, node voltages for n-channel MOSFET's $Q3$ and $Q4$ are summarized corresponding to the two logic states, INL = "low" (0 V) and INL = "high" (1.5 V). It is assumed here that $V_{CC} = 4$ V, $V_{LN} = 2$ V, and the gate threshold voltage $V_{TN} = 0.5$ V. The maximum applied voltage between any two nodes of the n-channel MOSFET's is suppressed below 2.5 V when input is "low" and is suppressed below 2.0 V when input is "high." The maximum voltage applied between drain and source of $Q3$ is $V_{CC} - V_{LN} + V_{TN}$ when input is "low," while that applied between gate and source/drain is V_{LN} when input is "high." This means that the optimum limiting voltage is $V_{LN} = (V_{CC} + V_{TN})/2$. This is the same for p-channel MOSFET's. Thus, the voltage applied to the MOSFET is almost halved by using this scheme and the oxide stress for all MOSFET's is relaxed.

The limiting voltages, V_{LN} and V_{LP} , generating circuit is shown in Fig. 3(a). The threshold voltage of a p-channel MOSFET, V_{TP} , is used as the reference. The gate

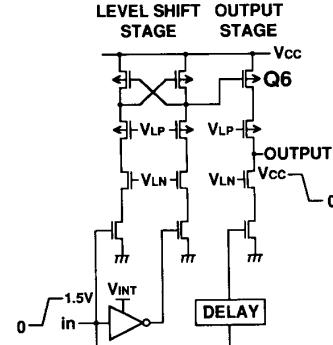


Fig. 4. Oxide-stress relaxed output buffer with dual-voltage-limiting scheme.

voltage of the $Q5$ is biased at $V_{CC}/2$ so as to relax oxide stress. Fig. 3(b) shows the measured characteristics of the limiting voltages together with the simulated ones. The difference in the characteristics is due to the threshold voltage deviation from the designed value.

The oxide-stress relaxed output buffer with dual voltage limiting scheme is shown in Fig. 4. The buffer consists of the output stage and the level-shift stage, which generates the drive signal for Q_6 . The full-swing output is obtained at the buffer output. The delay circuit is used for adjusting the delays of the drive signals for n-channel and p-channel MOSFET's of the output stage to avoid an unfavorable dc-current flow, which occurs if both n-channel and p-channel MOSFET's turn on at the same time. The level-shift stage consists of cross-coupled p-channel MOSFET's and an n-channel MOSFET pair, which is driven by the complementary signals. Fig. 5 shows a simulated transient response of the gate/drain voltages for p-channel MOSFET's in the output stage when the output is driven from "high" to "low." The simulation was performed for $V_{CC} = 3.3$ V and $V_{INT} = 1.5$ V. The simulation results show that the gate/drain voltage is suppressed below 2 V when operating from an external voltage of 3.3 V. In order to estimate the device lifetime [11], substrate currents I_{BB} induced by hot-carrier generation were measured for both proposed and conventional output buffers. This is shown in Fig. 6. The ratios of the

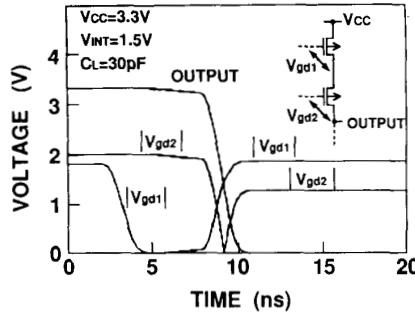


Fig. 5. Simulated transient response of gate/drain voltage for p-channel MOSFET's in output stage during switching operation of oxide-stress relaxed output buffer.

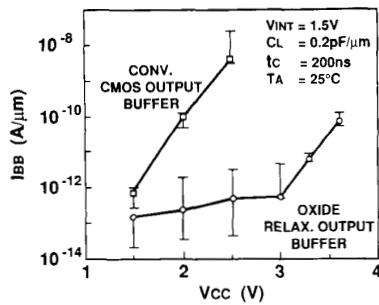


Fig. 6. Measured substrate current for conventional CMOS and oxide-stress relaxed output buffers.

load capacitance to gate width were $0.2 \text{ pF}/\mu\text{m}$ for both output buffers, and the cycle time is 200 ns. The I_{BB} increase was observed from 1.5 V for the conventional output buffer while it was hardly observed up to 3 V. The increase rate of the I_{BB} is around two decades/0.5 V for both cases. These results indicate that the oxide-stress relaxing scheme offers a reliable operation from an external power supply voltage of up to 4 V, even by using scaled MOSFET's with a sustaining voltage as low as 2.5 V.

Another advantage of the dual-voltage-limiting scheme is to minimize dependency of speed on operating voltage. Fig. 7 shows the simulated output delay time for an oxide-stress relaxed output buffer and a conventional CMOS output buffer, for different supply voltages. An almost constant delay time was obtained for the proposed output buffer, while two times variation was obtained for the conventional CMOS output buffer. This is because the gate/source voltage of the MOSFET's in the output stage is kept almost constant in the proposed scheme. This is also advantageous in suppressing peak current for higher supply voltages. V_{ss} peak currents for two kinds of output buffers were simulated as shown in Fig. 8. The device dimensions were chosen so as to get the same amount of peak current at 3.3 V. The peak current for the proposed buffer stays almost at the same level from 1.5 to 1.6 V in contrast with the strong dependence of the peak current on operating voltage for the conventional

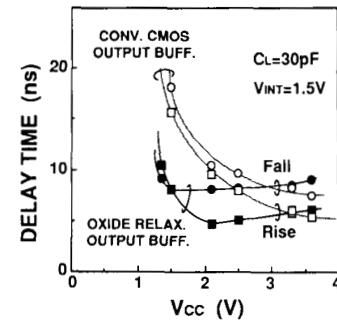


Fig. 7. Simulated output delay time for two types of output buffers for different supply voltages.

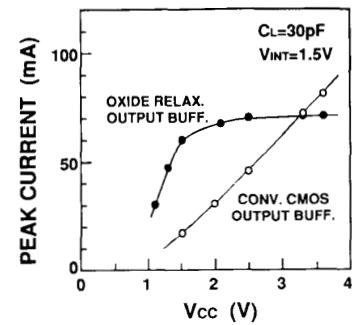


Fig. 8. Simulated V_{ss} peak current for two types of output buffers for different supply voltages.

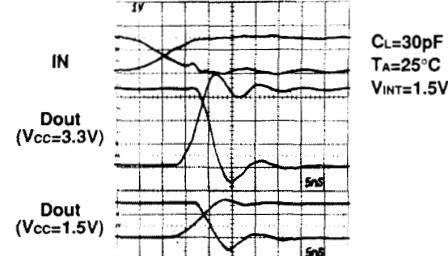


Fig. 9. Operating waveforms for oxide-stress relaxed output buffer.

buffer. This helps to suppress the noise associated with a large peak current, especially in higher V_{cc} conditions. The operating waveforms of the proposed output buffer for $V_{cc} = 1.5$ and 3.3 V are shown in Fig. 9. Almost the same delay time was observed for the two different voltages, as was expected from simulation results.

IV. TWO-WAY POWER SUPPLY SCHEME

Fig. 10 shows a circuit schematic of the two-way power supply unit. Internal supply voltage V_{int} is fed through either the voltage down converter (VDC) or the switch (SW). The oxide-stress relaxation technique is also applied to this supply unit so miniaturized MOSFET's can be used. The VDC consists of the current-mirror differen-

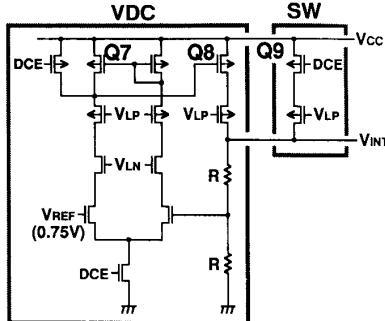
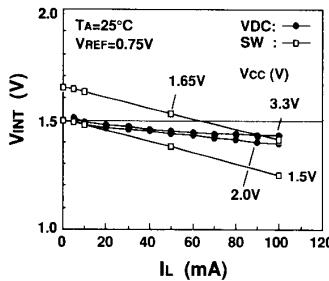
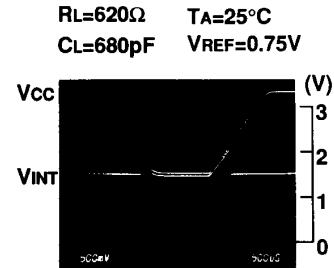




Fig. 10. Circuit schematic of two-way power supply unit.

Fig. 11. Measured V_{INT} versus load current characteristics for two-way power supply unit for different supply voltages.

tial amplifier and the output stage with p-channel MOSFET's. This configuration shows good voltage regularity [12]. The reference input for the VDC (V_{REF}) is designed to be 0.75 V (half of the V_{INT}) so that the common-mode input level is low enough to provide stable operation even when V_{CC} decreases to around 1.5 V. This low input level prevents operation in the linear region for the p-channel MOSFET ($Q7$) of the differential stage and attains enough voltage gain when V_{CC} is decreased to 1.5 V. One reason why the SW is used in the low operating voltage region is that the driving capability of $Q8$ is comparatively low when V_{CC} is decreased to about V_{INT} and $Q8$ operates in the linear region. The switch with p-channel MOSFET $Q9$ is then used for low supply voltage. The gate width of $Q9$ is three times larger than $Q8$ to minimize the on-resistance when V_{INT} is supplied from V_{CC} directly. The other reason is to save the operating power of the VDC when supply voltage is low and external V_{CC} can be directly applied to the DRAM core. DCE is "high" and the VDC is enabled when $V_{CC} > 1.65$ V, while DCE is "low" and the SW is enabled when $V_{CC} < 1.65$ V. The measured V_{INT} versus load current characteristics for the two-way power supply unit for different supply voltages are shown in Fig. 11. The VDC is enabled when $V_{CC} = 3.3$ and 2.0 V while the SW is enabled when $V_{CC} = 1.65$ and 1.5 V. The average operating current for the peripheral circuit of the designed 64-Mb DRAM was 16 mA with 180-ns RAS cycle time for a typical condition. The simulation results show that V_{INT} at the output of the VDC was deviated

Fig. 12. Transient response of V_{INT} for 1.5–3.6-V V_{CC} bump.

from the quiescent value by $+0.04$ and -0.02 V due to the peak current induced by the peripheral circuit operation when the DRAM is operated from a 3.3-V external power supply. A decrease in V_{INT} , induced by the load current, is also reduced to as low as -10% when the SW is enabled. Thus, the proposed power supply scheme has enough margin to feed the operating current for the 1.5-V 64-Mb DRAM core. Fluctuation of V_{INT} can be suppressed to within $\pm 10\%$ (± 0.15 V) of the quiescent value (1.5 V) over an operating voltage range of 1.5 to 3.6 V when the VDC and SW are switched at 1.65 V. Fig. 12 shows the transient response of V_{INT} for a 1.5–3.6-V V_{CC} bump measured using a test circuit. A dummy load with resistance and capacitance is connected at the output. The reference input voltage for the VDC was 0.75 V. Switching of the VDC and the SW is designed to occur at $V_{CC} = 1.8$ V for negative and 2 V for positive transition of V_{CC} . The reason for making the switching voltage different is to avoid chattering between the VDC and the SW. These values can be decreased to around 1.65 V to decrease V_{INT} fluctuation. The experimental results show smooth switching characteristics between the VDC and the SW for a 1.5–3.6-V V_{CC} bump.

V. 1.5–3.6-V 64-Mb DRAM DESIGN

An experimental 1.5–3.6-V 64-Mb DRAM was designed and fabricated utilizing the above circuit techniques. Fig. 13 shows a microphotograph and architecture of the designed chip. The chip measures 9.74 mm \times 20.28 mm. The power supply unit as well as other peripheral circuits are placed in the center of the chip. This helps to shorten the internal power supply lines as well as signal lines. The simulated dependency of RAS access time t_{RAC} on external supply voltage is shown in Fig. 14. A typical RAS access time of 50 ns can be obtained for an external power supply range from 1.5 to 3.6 V. Access time difference for $V_{CC} = 1.5$ and 3.3 V was reduced to as low as 1.5 ns due to proposed universal- V_{CC} circuit techniques. The slight decrease in the access time for lower operating voltage is due to the reduced delay time of the output buffer as shown in Fig. 7. Typical operating current is 29 mA for 1.5-V external power supply and 35 mA for 3.3 V, both with a cycle time of 180 ns. The increase in operating current is due to that consumed by the VDC.

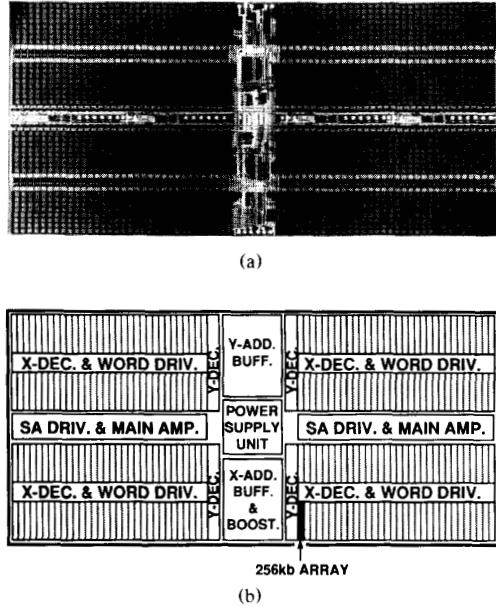


Fig. 13. Microphotograph and architecture of the experimental 64-Mb DRAM: (a) microphotograph and (b) chip architecture.

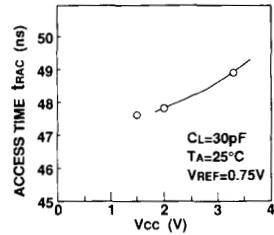


Fig. 14. Simulated *RAS* access time shown as a function of supply voltage.

Waveforms of the experimental 1.5–3.6-V 64-Mb DRAM operated from 1.5- and 3.3-V external power supply are presented in Fig. 15. A typical *RAS* access time of 70 ns was obtained for both 1.5 and 3.3 V. There are two reasons for the difference between the measured access time and the simulated one. One is a deviation in the characteristics of the MOSFET's such as the gate-oxide thickness and gate length from the designed one. The other is the deviation in the diffusion layer resistance from the designed value. Therefore, a further reduction in the access time to 50 ns is expected by improving on these drawbacks. The almost constant access time for both 1.5 and 3.3 V should be noted here. This was achieved by the circuit techniques in realizing the universal- V_{CC} DRAM.

Thus, stable and high-speed operation of the DRAM can be maintained over the wide supply voltage range of 1.5–3.6 V by using the newly developed circuit techniques (universal- V_{CC} DRAM) presented here.

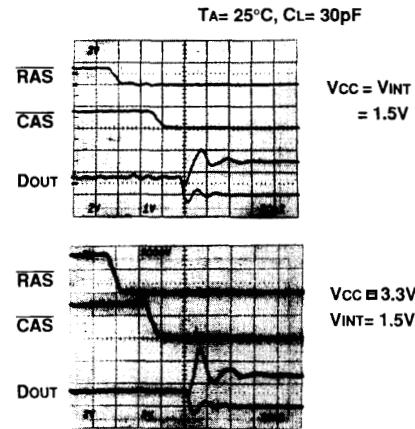


Fig. 15. Operating waveforms of the 64-Mb DRAM for 1.5- and 3.3-V external power supply.

VI. CONCLUSION

Novel circuit techniques for battery-operated DRAM's which cover a wide range of operating voltage range from 1.5 to 3.6 V (universal- V_{CC} DRAM) have been presented. These are the oxide-stress relaxation technique to improve high-voltage sustaining characteristics while only scaled MOSFET's are used in the entire chip, and a two-way power supply scheme to minimize the internal voltage fluctuation to achieve a stable operation over a wide supply voltage range. An increase in sustaining voltage by about 1.5 V when compared with a conventional circuit has been achieved by the oxide-stress relaxation technique. It enables scaled MOSFET's to be used for the circuits, which can be operated from an external V_{CC} of up to 4 V. Internal voltage fluctuation has been suppressed to within 10% when the DRAM is operated from external power supply voltages ranging from 1.5 to 3.6 V. A 1.5–3.6-V 64-Mb DRAM has been designed using these techniques. An almost constant *RAS* access time has been obtained for 1.5–3.6-V external power supply voltages. These results show that the battery-operated DRAM is a promising target for future DRAM's.

ACKNOWLEDGMENT

The authors wish to thank S. Asai, T. Masuhara, K. Shimohigashi, H. Sunami, E. Takeda, H. Kawamoto, M. Ishihara, and S. Itoh for their helpful suggestions. They would also like to thank T. Kure, F. Murai, A. Hiraiwa, S. Iijima, H. Shinriki, R. Izawa, D. Hisamoto, and the fabrication staff in the laboratory for their support during device fabrication and Y. Watanabe, E. Yamasaki, and K. Kawamoto for designing the chip.

REFERENCES

- [1] Y. Nakagome *et al.*, "A 1.5V circuit technology for 64Mb DRAMs," in *Symp. VLSI Circuits Dig. Tech. Papers*, June 1990, pp. 17–18.
- [2] M. Aoki *et al.*, "A 1.5-V DRAM for battery-based applications," *IEEE J. Solid-State Circuits*, vol. 24, pp. 1206–1212, Oct. 1989.

- [3] Y. Nakagome *et al.*, "Circuit techniques for 1.5-3.6V battery-operated 64Mb DRAMs," in *ESSCIRC Dig. Tech. Papers*, Sept. 1990, pp. 157-160.
- [4] T. Kaga *et al.*, "Crown-shaped stacked-capacitor cell for 1.5-V operation 64-Mbit DRAMs," *IEEE Trans. Electron Devices*, vol. 38, pp. 255-261, 1991.
- [5] H. Shinriki *et al.*, "Leakage current reduction and reliability improvement of effective 3nm-thick CVD Ta_2O_5 film by two-step annealing," in *Symp. VLSI Technology Dig. Tech. Papers*, May 1989, pp. 25-26.
- [6] M. Aoki *et al.*, "A 60-ns 16-Mbit CMOS DRAM with a transposed data-line structure," *IEEE J. Solid-State Circuits*, vol. 23, pp. 1113-1119, Oct. 1988.
- [7] H. Hidaka *et al.*, "Twisted bit-line architecture for multi-megabit DRAMs," *IEEE J. Solid-State Circuits*, vol. 24, pp. 21-27, Feb. 1989.
- [8] K. Itoh *et al.*, "An experimental 1 Mb DRAM with on-chip voltage limiter," in *ISSCC Dig. Tech. Papers*, Feb. 1984, pp. 282-283.
- [9] S. Hayakawa *et al.*, "A 1- μ A retention 4 Mb SRAM with a thin-film transistor load cell," in *ISSCC Dig. Tech. Papers*, Feb. 1990, pp. 128-129.
- [10] T. Sakurai *et al.*, "Hot-carrier suppressed VLSI with submicron geometry," in *ISSCC Dig. Tech. Papers*, Feb. 1985, pp. 272-273.
- [11] E. Takeda *et al.*, "An empirical model for device degradation due to hot-carrier injection," *IEEE Electron Device Lett.*, vol. EDL-4, pp. 111-113, 1983.
- [12] M. Horiguchi *et al.*, "A tunable CMOS DRAM voltage limiter with stabilized feedback amplifier," *IEEE J. Solid-State Circuits*, vol. 25, pp. 1129-1135, Oct. 1990.

Yoshinobu Nakagome (M'86) was born in Tokyo, Japan, on February 21, 1956. He received the B.S. degree in electrical and electronic engineering and the M.S. degree in applied electronics from Tokyo Institute of Technology, Tokyo, Japan, in 1978 and 1980, respectively.

In 1980 he joined the Central Research Laboratory, Hitachi Ltd., Tokyo, Japan, where he was engaged in research on MOS device physics and technologies. Since 1983 he has been working on high-density MOS dynamic memories.

He was a Visiting Industrial Fellow at the University of California, Berkeley, from 1987 to 1988.

Mr. Nakagome is a member of the Institute of Electronics, Information and Communication Engineers of Japan.

Kiyoo Itoh (SM'89) was born in Miyagi, Japan, on January 5, 1941. He received the B.S. and Ph.D. degrees in electronics from Tohoku University, Sendai, Japan, in 1963 and 1976, respectively.

In 1963 he joined the Central Research Laboratory, Hitachi Ltd., Tokyo, Japan, where he was first involved in core memory design. After that, he was engaged in the characterization of plated-wire memory elements and the design of plated-wire memory systems. Since 1972, he has concentrated on DRAM developments of eight generations ranging from 4 kb to 64 Mb. In his 20-year DRAM experience he has proposed and developed leading technologies such as: the first 16-kb NMOS DRAM, the first single 5-V 16-kb NMOS DRAM, the first single 5-V 64-kb NMOS DRAM using a low-noise folded data(bit)-line arrangement, a CMOS DRAM proposal, exploratory developments of on-chip voltage limiters, a proposal of a multidivided data-line structure combined with shared I/O's, the first DRAM chip using a trench capacitor cell, systematic analysis and evaluation of soft-error mechanisms, a 16-Mb DRAM based on data-line interference noise analysis and its reduction through detailed formulations and experiments, initiation of high-speed DRAM with BiCMOS, a 1.5-V DRAM proposal, and the first 64-Mb DRAM. He became Chief Scientist and a Senior Chief Scientist in the Hitachi Central Research Laboratory in 1983 and 1991, respectively. His responsibilities include developing the innovative CMOS and BiCMOS DRAM circuits suitable for deep-submicrometer devices, guiding and encouraging the fabrication process, and device and simulation technology development groups. He has published more than

70 articles in technical journals and international conferences. In addition, he has contributed to about 300 patent applications including those for a folded data-line arrangement, an on-chip voltage limiter scheme, a multidivided data-line, and BiCMOS DRAM.

Dr. Itoh is a Senior Member of the IEEE Electron Devices Society and a member of the Institute of Electronics, Information, and Communications Engineers of Japan. He won the IEEE Electron Devices Society 1984 Paul Rappaport Award. He was awarded the prize of the governor of Tokyo for outstanding inventions and research in 1988, and received the National Invention Award, the prize of the president of the Patent Attorney's Association of Japan, for a DRAM invention (folded data-line arrangement) in 1989. In 1990 he received the Achievement Award of the Institute of Electronics, Information and Communication Engineers of Japan.

Kan Takeuchi (M'88) was born in Nagasaki, Japan, on March 2, 1960. He received the B.S. and M.S. degrees in applied physics from the University of Tokyo, Tokyo, Japan, in 1982 and 1984, respectively.

In 1980 he joined the Central Research Laboratory, Hitachi Ltd., Tokyo, Japan, where he has been working on DRAM's.

Mr. Takeuchi is a member of the Japan Society of Applied Physics.

Eiji Kume was born in Matsuyama, Japan, on January 11, 1962. He graduated from Ehime Technical High School, Matsuyama, Japan, in 1980.

In 1980 he joined the Central Research Laboratory, Hitachi, Ltd., Tokyo, Japan, where he worked on the research and development of MOS dynamic memories. Since 1990 he has been with the Shikoku Branch Office, Hitachi, Ltd., Matsuyama, Japan.

Mr. Kume is a member of the Institute of Electronics, Information and Communication Engineers of Japan.

Hitoshi Tanaka was born in Ishikawa, Japan, on February 7, 1956. He received the B.S. and M.S. degrees in electronic engineering from Fukui University, Fukui, Japan, in 1978 and 1980, respectively.

In 1980 he joined the Hitachi VLSI Engineering Corporation, Tokyo, Japan. Since then he has been engaged in the development of DRAM.

Mr. Tanaka is a member of the Institute of Electronics, Information and Communication Engineers of Japan.

Masanori Isoda was born in Saitama, Japan, on January 30, 1959. He graduated from Nihon Kogakuen Technical School, Tokyo, Japan, in 1979.

In 1979 he joined the Hitachi VLSI Engineering Corporation, Tokyo, Japan. Since then he has been engaged in work on MOS integrated circuits, especially for DRAM.

Tatsunori Masha was born in Hokkaido, Japan, on February 2, 1964. He received the B.S. degree in applied physics from Tohoku Gagakuin University, Sendai, Japan, in 1986.

In 1986 he joined the Hitachi VLSI Engineering Corporation, Tokyo, Japan. Since then he has been engaged in the development of DRAM.

Mr. Masha is a member of the Institute of Electronics, Information and Communication Engineers of Japan.

Toru Kaga (M'87) was born in Hakodate, Japan, on November 22, 1954. He received the B.S. and M.S. degrees, both in physics, from Waseda University, Tokyo, Japan, in 1978 and 1980, respectively, and the Ph.D. degree in applied physics from Waseda University in 1989.

In 1980 he joined the Central Research Laboratory, Hitachi Ltd., Tokyo, Japan. He initially worked on the characterization of nonvolatile memory devices, i.e., the write/erase characteristics, simulation, and characterization of SiO_2 and oxynitride films. From 1985 until 1986 he was working on the design of submicrometer isolation and MOSFET's. Since 1986 he has been working on the total LSI process design and device characterization for DRAM's.

Dr. Kaga is a member of the Japan Society of Applied Physics and the Institute of Electronics, Information and Communication Engineers of Japan.

Teruaki Kisu was born in Tokyo, Japan, on November 28, 1957. He received the B.S. and M.S. degrees in electrical engineering from Nihon University, Tokyo, Japan, in 1980 and 1982, respectively.

In 1982 he joined the Hitachi Microcomputer Engineering Corporation, Tokyo, Japan. He worked on the research and development of semiconductor nonvolatile memory devices. He is now engaged in the research and development of dynamic RAM's at the Hitachi VLSI Engineering Corporation, Tokyo, Japan.

Mr. Kisu is a member of the Japan Society of Applied Physics.

Takashi Nishida was born in Tokyo, Japan in 1950. He received the B.S. and M.S. degrees in metallurgy from the University of Tokyo in 1972 and 1974, respectively.

He joined the Central Research Laboratory (CRL), Hitachi Ltd., Tokyo, Japan, in 1974, and then worked on the research and development of field emission cathodes, CO_2 laser-assisted dielectric film deposition, and InSb thin-film transistors. He is currently a Senior Researcher at the ULSI Research Center in the CRL en-

gaged in multilevel interconnection technology for ULSI's. He is the Manager of the Process Integration Center within the CRL, and also responsible for CMOS SRAM and BiCMOS LSI process integration.

Mr. Nishida is a member of the Japan Society of Applied Physics and the Japan Institute of Metals.

Yoshifumi Kawamoto was born in Nara, Japan, in 1948. He received the B.S. and M.S. degrees in physics from Osaka University, Osaka, Japan, in 1971 and 1973, respectively.

Since joining the Central Research Laboratory, Hitachi Ltd., Tokyo, Japan, in 1973, he has been engaged in the research and development of MOS LSI fabrication technology. His current interests are dry-etching technology and MOS device isolation.

Mr. Kawamoto is a member of the Japan Society of Applied Physics and the Physical Society of Japan.

Masakazu Aoki (M'76-S'81-M'82) received the B.S. degree in applied physics from Tokyo University, Tokyo, Japan, in 1971, and the M.S. degree in electrical engineering from the University of Michigan, Ann Arbor, in 1982.

Since joining the Central Research Laboratory, Hitachi Ltd., Tokyo, Japan, in 1971, he has been engaged in work on linear and area image sensors as well as CMOS memory circuits and devices. Currently he is working on high-density DRAM development.

Mr. Aoki is a member of the Institute of Electronics, Information and Communication Engineers of Japan.