A Four-Power Algebraic Identity
A Four-Power Algebraic Identity
Let , , be three arbitrary complex numbers.
x
y
z
Set
x
1
x
2
x
3
x
4
x
5
x
6
and
y
1
y
2
y
3
y
4
y
5
y
6
Then for ,
k=0,1,2,3,4
"k"
"x"
1
"k"
"x"
2
"k"
"x"
3
"k"
"x"
4
"k"
"x"
5
"k"
"x"
6
"k"
"y"
1
"k"
"y"
2
"k"
"y"
3
"k"
"y"
4
"k"
"y"
5
"k"
"y"
6
In this Demonstration, the input variables are integers.
For example,
1
(-40)
1
(-26)
1
3
1
6
1
(-13)
1
(-23)
1
(-37)
1
(-18)
1
(-8)
1
(-34)
1
(9)
1
(-5)
2
(-40)
2
(-26)
2
3
2
6
2
(-13)
2
(-23)
2
(-37)
2
(-18)
2
(-8)
2
(-34)
2
(9)
2
(-5)
3
(-40)
3
(-26)
3
3
3
6
3
(-13)
3
(-23)
3
(-37)
3
(-18)
3
(-8)
3
(-34)
3
(9)
3
(-5)
4
(-40)
4
(-26)
4
3
4
6
4
(-13)
4
(-23)
4
(-37)
4
(-18)
4
(-8)
4
(-34)
4
(9)
4
(-5)
External Links
External Links
Permanent Citation
Permanent Citation
Minh Trinh Xuan
"A Four-Power Algebraic Identity"
http://demonstrations.wolfram.com/AFourPowerAlgebraicIdentity/
Wolfram Demonstrations Project
Published: May 26, 2022