Riemann's Minimal Surface

​
x
y
view
color
Riemann's minimal surface is a family of singly periodic embedded minimal surfaces discovered by Bernhard Riemann and published after his death in 1866. The surfaces have an infinite number of ends in parallel planes, foliated by horizontal circles, converging to helicoids or catenoids. The parametrization presented here is based on[1], using the Weierstrass representation, given in terms of elliptic functions.
An application for screw dislocations on liquid crystals can be found in[2].

References

[1] F. Martín and J. Pérez, "Superficies Minimales Foliadas por Circunferencias: Los Ejemplos de Riemann," La Gaceta de la RSME, 6(3), 2003 pp. 571–596. dmle.cindoc.csic.es/pdf/GACETARSME_2003_ 06_ 3_ 02.pdf.
[2] E. A. Matsumoto, R. D. Kamien, and C. D. Santangelo, "Smectic Pores and Defect Cores." arxiv.org/pdf/1110.0664v1.

External Links

Bernhard Riemann (Wolfram|Alpha)
Helicoid (Wolfram MathWorld)
Catenoid (Wolfram MathWorld)
Minimal Surface (Wolfram MathWorld)
Genus (Wolfram MathWorld)
Elliptic Function (Wolfram MathWorld)

Permanent Citation

Enrique Zeleny
​
​"Riemann's Minimal Surface"​
​http://demonstrations.wolfram.com/RiemannsMinimalSurface/​
​Wolfram Demonstrations Project​
​Published: June 3, 2014