Driven Damped Simple Single Pendulum released from rest

Description

A simple pendulum is driven by an applied torque. What happens as you make the torque stronger?
The parameters we use are:
​
ω
0
=3ω/2
, where ω is the driving frequency and has been set equal to 2π for convenience.
β =
ω
0
/4
so that this system is underdamped.
γ is varied.

Angle and Angular Velocity vs time

In[]:=
ManipulateModule{eq1,sol,p1},​​With{ω=2π},​​eq1=θ''[t]+2βθ'[t]+
2
ω0
Sin[θ[t]]==γ
2
ω0
Cos[ωt];​​sol=ParametricNDSolve[{eq1,θ[0]==θ0,θ'[0]==0},{θ,θ'},{t,0,tfinal},{β,ω0,γ,θ0}];​​Row@ColumnPlot
1
Degree
θ
3
2
ω
4
,
3
2
ω,γval,θ0val[t]/.sol,{t,0,tfinal},GridLines->Automatic,AspectRatio->13,PlotLabel->Row[{Style["Angle θ (degrees) vs. time",FontSize->14]}],ImageSize->{800,300},PlotRange->All,PlotPoints->100,Plotθ'
3
2
ω
4
,
3
2
ω,γval,θ0val[t]/.sol,{t,0,tfinal},ImageSize->{800,100},AspectRatio->Full,PlotLabel->Style["Angular velocity

θ
vs. time",FontSize->14],PlotPoints->100,​​AnimateEvaluate@Graphics​​​​{PointSize[0.05],Point[{0,0}]},​​Thickness[.01],Line[{{0,0},{Sin[θ],-Cos[θ]}}]/.θ->θ
1.5ω
4
,
3
2
ω,γval,θ0val[t]/.sol/.t->tcurrent,​​{Text[Row[{"Time = ",tcurrent}],{-.8,0.9}]}​​,PlotRange->{{-1.1,1.1},{-1.1,1.1}},AspectRatio->Full,{tcurrent,0.1,tfinal},AnimationRepetitions->1,AnimationRate->.5​​​​​​​​,{{γval,0.2,Style["Forcing Magnitude γ",FontSize->14]},0.01,1.2},​​{{tfinal,6,Style["Length of simulation",FontSize->14]},3,100,1},​​{{θ0val,10Degree,Style["Initial Angle",FontSize->14]},-90Degree,90Degree,5Degree}​​
Out[]=
​
Forcing Magnitude γ
Length of simulation
Initial Angle
tcurrent

Cloud Deploy

In[]:=
CloudPublish[]