WOLFRAM NOTEBOOK

With[{data=NestList[EnergyExchangeAllNN[FixedEnergyExchange[True]],ConstantArray[1,1000],2000]},Histogram[Catenate[Take[data,-500]],Automatic,{"Log","Count"},ChartStyle$SecondLawColors["Blues",3],PlotRange->All,FrameTrue,AspectRatio1/3]]

Evolution

In[]:=
With[{data=NestList[EnergyExchangeAllNN[FixedEnergyExchange[True]],ConstantArray[1,10000],20]},Histogram[#,{.25},{"Log","Probability"},ChartStyle$SecondLawColors["Blues",3],PlotRange->{{0,8},{Automatic,1}},FrameTrue,AspectRatio1/3]&/@data]
Out[]=
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
In[]:=
GraphicsGrid[Partition[With[{data=NestList[EnergyExchangeAllNN[FixedEnergyExchange[True]],ConstantArray[1,10000],16]},Histogram[#,{.25},{"Log","Probability"},ChartStyle$SecondLawColors["Blues",3],PlotRange->{{0,8},{Automatic,1}},FrameTicks->None,FrameTrue,AspectRatio1/3]&/@data],4]]
Out[]=
In[]:=
8/30.
Out[]=
0.266667
In[]:=
GraphicsGrid[Partition[With[{data=NestList[EnergyExchangeAllNN[FixedEnergyExchange[True]],ConstantArray[1,10000],16]},Histogram[#,{.25},{"Log","Probability"},ChartStyle$SecondLawColors["Blues",3],PlotRange->{{0,8},{Automatic,1}},FrameTicks->None,FrameTrue,AspectRatio1/3]&/@data],4]]
Out[]=
In[]:=
GraphicsGrid[Partition[With[{data=NestList[EnergyExchangeAll[FixedEnergyExchange[True]],ConstantArray[1,10000],16]},Histogram[#,{.25},{"Log","Probability"},ChartStyle$SecondLawColors["Blues",3],PlotRange->{{0,8},{Automatic,1}},FrameTicks->None,FrameTrue,AspectRatio1/3]&/@data],4]]
Out[]=
In[]:=
GraphicsGrid[Partition[With[{data=NestList[EnergyExchangeAllNN[FixedEnergyExchange[True]],CenterArray[ConstantArray[100,100],10000],16]},Histogram[#,{.25},{"Log","Probability"},ChartStyle$SecondLawColors["Blues",3],PlotRange->{{0,8},{Automatic,1}},FrameTicks->None,FrameTrue,AspectRatio1/3]&/@data],4]]
Out[]=
In[]:=
GraphicsGrid[Partition[With[{data=Take[NestList[EnergyExchangeAllNN[FixedEnergyExchange[True]],CenterArray[ConstantArray[100,100],10000],1600],1;;-1;;100]},Histogram[#,{.25},{"Log","Probability"},ChartStyle$SecondLawColors["Blues",3],PlotRange->{{0,8},{Automatic,1}},FrameTicks->None,FrameTrue,AspectRatio1/3]&/@data],4]]
General
:4.5651×
-308
10
0.295132 is too small to represent as a normalized machine number; precision may be lost.
General
:1.31087×
-307
10
0.0193446 is too small to represent as a normalized machine number; precision may be lost.
General
:2.48449×
-308
10
0.0170639 is too small to represent as a normalized machine number; precision may be lost.
General
:Further output of General::munfl will be suppressed during this calculation.
Out[]=

Integer case

Fixed energy distribution fractions

One collision at a time...
[[[ Pure diffusion equation in energy space ]]]
Pure diffusion should approach uniform distribution.... [ others might be bimodal uniform ]
Weighted Pascal’s triangle.... [ but with wrapping ]

Initially uniform

Random Connections

Actual hard spheres

Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.