Place the cursor within an expression in an Input cell and type Shift + Return or Shift + Enter to evaluate it
In[]:=
1/(3π)Integrate[(((1/1-24/0.859216(Cos[1.45p]+2Cos[0.94576p]-3Sin[0.94576p]/0.94576))-1)(5/6-Power[p,2]/1.9602+Power[(Power[p,2]-Power[0.99,2]),2]/3.881196Log[0.99+p/0.99-p])Power[(p),2]),{p,0,70}]
Out[]=
1.54423×
11
10
In[]:=
1/(3π)Integrate[(((1/1-24/0.859216(Cos[1.45p]+2Cos[0.94576p]-3Sin[0.94576p]/0.94576))-1)(5/6-Power[p,2]/1.9602+Power[(Power[p,2]-Power[0.99,2]),2]/3.881196Log[0.99+p/0.99-p])Power[(p),2]),{p,0,70}]//HoldForm//TraditionalForm
Out[]//TraditionalForm=
70
∫
0
1
1
1
-
24cos(1.45p)+2cos(0.94576p)-
3sin(0.94576p)
0.94576

0.859216
-1
5
6
-
2
p
1.9602
+
2
(
2
p
-
2
0.99
)
log0.99+
p
0.99
-p
3.8812
2
p
p
3π
In[]:=
fun[p_]:=(((1/1-24/0.859216(Cos[1.45p]+2Cos[0.94576p]-3Sin[0.94576p]/0.94576))-1)(5/6-Power[p,2]/1.9602+Power[(Power[p,2]-Power[0.99,2]),2]/3.881196Log[0.99+p/0.99-p])Power[(p),2])/(3Pi)
In[]:=
Plot[fun[p],{p,0,70},PlotRange->All]
Out[]=
10
20
30
40
50
60
70
-1.5e+11
-1.0e+11
-5.0e+10
5.0e+10
1.0e+11
1.5e+11
In[]:=
Integrate[fun[p],{p,0,70}]
Out[]=
1.54423×
11
10
In[]:=
fun[p]//Simplify//TraditionalForm
Out[]//TraditionalForm=
-2.96372
2
p
-0.510152
2
p
+0.257653
2
(
2
p
-0.9801)
log(0.010101p+0.99)+
5
6
(-3.17205sin(0.94576p)+2cos(0.94576p)+cos(1.45p))