This Demonstration shows a tree defined by red nodes with black edges. Obstacles are drawn in blue, and the goal position is indicated by a locator surrounded by a disc of radius goal radius. This is yellow before the goal is reached and turns green after success. As shown in the Snapshots, a tree generated by random motion from a randomly selected tree node does not explore very far (Snapshot 1). A rapidly exploring random tree (RRT) first selects a goal point (drawn in green), then tries to add an edge from the closest node in the tree (blue) toward the goal point. This results in a tree that tends to quickly explore the space, because search is biased into the largest Voronoi regions of a graph defined by the tree. RRT* improves on this by rewiring the tree to form shortest paths. RRT* converges to the shortest path, at the cost of more computation. All three trees are probabilistically complete, meaning if a nonzero width path exists, the tree will eventually find the path. This Demonstration attempts to construct a path (dark green) from the starting point (red) to the goal locator. Exploration can be biased toward the goal instead of random sampling by changing the corresponding slider.