A Three-Term Algebraic Identity with Squares or Quartics
A Three-Term Algebraic Identity with Squares or Quartics
Let , be two arbitrary numbers.
x
y
Set
A=(x+y)-10xy-3
2
x
2
y
B=3+5y-15x+15
3
x
2
x
2
y
3
y
C=+11y-13x+9
3
x
2
x
2
y
3
y
D=(x+y)3+2xy-9
2
x
2
y
E=+3y+19x-15
3
x
2
x
2
y
3
y
F=-y+27x-3
3
x
2
x
2
y
3
y
Then for ,
k=2,4
k
A
k
B
k
C
k
D
k
E
k
F
In this Demonstration, and are integers.
x
y
For example,
2
19
2
103
2
133
2
7
2
107
2
131
4
19
4
103
4
133
4
7
4
107
4
131
External Links
External Links
Permanent Citation
Permanent Citation
Minh Trinh Xuan
"A Three-Term Algebraic Identity with Squares or Quartics"
http://demonstrations.wolfram.com/AThreeTermAlgebraicIdentityWithSquaresOrQuartics/
Wolfram Demonstrations Project
Published: January 17, 2023