numerical integration :
In[]:=
NIntegrate[1/(Sqrt[u^2+v^2](1+u^2+v^2)),{u,0,1},{v,0,1}]
Out[]=
1.31941
{evaluation time, exact value} :
In[]:=
Integrate[1/(Sqrt[u^2+v^2](1+u^2+v^2)),{u,0,1},{v,0,1}]//AbsoluteTiming
Out[]=
46.1995,7+3πArcSin+2ArcSinh[1]-3ArcSinh-Log[4]+Log[(1-)+]-Log[1+(-1+]-Log[1-(1+]-Log[1+(1+]-32-8ArcSinhArcTan+4ArcSinhLog[((-1+)+Log[((1+)+Log[1-(-1+]+4ArcSinhLog[1-(1+]+ArcSin-8ArcTan+4Log[(1-)+]+Log[1+(1+]+ArcSinh[1]-Log[9]+2-2Log[1+]+Log[1+(-1+]+Log[1-(1+]+Log[1+(1+]-2Log[-1+]+2PolyLog2,-(-1+-2PolyLog2,-(-1+-2PolyLog2,+2PolyLog2,-(-1++2PolyLog2,(-1+
1
12
2
π
2+
2
3/4
2
2-
2
3/4
2
2
]+Log[(1+)+2
]+Log[((-1+)+2
)]+Log[-2+2
]+Log[2+2
]+Log[((1+)+2
)]-Log[1-(-1+2
)ArcSinh[1]
2
)ArcSinh[1]
2
)ArcSinh[1]
2
)ArcSinh[1]
2
ArcSinh[1]
2-
2
3/4
2
(2+(π+2ArcSinh[1])
2
)Cot1
4
2
2-
2
3/4
2
2
)]-4ArcSinh2-
2
3/4
2
2
)]-4ArcSinh2-
2
3/4
2
2
)ArcSinh[1]
2-
2
3/4
2
2
)ArcSinh[1]
2+
2
3/4
2
(-2+(π+2ArcSinh[1])
2
)Cot1
4
2
2
]-Log[(1+)+2
]-Log[1+(-1+2
)ArcSinh[1]
2
)ArcSinh[1]
2
]+Log[1-(-1+2
)ArcSinh[1]
2
)ArcSinh[1]
2
)ArcSinh[1]
2
)ArcSinh[1]
2ArcSinh[1]
2
)+2PolyLog2,(-1+2
)-PolyLog2,-3+22
+2PolyLog2,-2ArcSinh[1]
2
)-ArcSinh[1]
2
-ArcSinh[1]
2+
2
2
)ArcSinh[1]
2
)ArcSinh[1]
integral over [-1, 1]
integral over [-1, 1]
In[]:=
Integrate[ArcSin[t]/(1+t^2),{t,1/Sqrt[2],1}]
Out[]=
1
16
2
π
2
Log[2]
2
Log[1+
2
]2
]+42
Log[2+
2
]1/4
(-1)
1/4
(-1)
1/4
(-1)
1/4
(-1)
2
]-2Log[(1-)+2
]+2Log[(1+)+2
]-Log[1+2
]-2Log[-((1+)+2
)]+Log[2+2
]-8PolyLog2,(1-)-1-
2
1+
2
1/4
(-1)
2
)+8PolyLog2,3/4
(-1)
2
)In[]:=
NIntegrate[1/(Sqrt[u^2+v^2](1+u^2+v^2)),{u,v}∈Rectangle[{-1,-1},{1,1}]]π^2-2πArcTan[Sqrt[2]]+8NIntegrate[ArcSin[t]/(1+t^2),{t,1/Sqrt[2],1}]π^2+8Re[PolyLog[2,(Sqrt[2]-1)E^(3Iπ/4)]-PolyLog[2,(Sqrt[2]-1)E^(Iπ/4)]]//N
Out[]=
5.27764
Out[]=
5.27764
Out[]=
5.27764