In[]:=
Unprotect[Power];​​Power[0|0.,0|0.]=1;​​Protect[Power];
In[]:=
NumberForm[{1.2^1.2,Sum[Sum[(Log[1.2]^n/n!)Binomial[n,j]j^(n-j),{j,0,n}],{n,0,18}],Sum[(1.2-1)^n/n!Sum[StirlingS1[n,m]Sum[Binomial[m,j]j^(m-j),{j,0,m}],{m,0,n}],{n,0,18}]},10]
Out[]//NumberForm=
{1.244564747,1.244564747,1.244564747}
In[]:=
NumberForm[{1.2^1.2^1.2,Sum[Log[1.2]^n/n!(Sum[Sum[Binomial[n-k,a]Binomial[n,k]k^aa^(n-k-a),{a,0,n-k}],{k,0,n}]),{n,0,18}],Sum[(1.2-1)^n/n!Sum[StirlingS1[n,m]Sum[Sum[Binomial[m-k,a]Binomial[m,k]k^aa^(m-k-a),{a,0,m-k}],{k,0,m}],{m,0,n}],{n,0,18}]},10]
Out[]//NumberForm=
{1.254718171,1.254718171,1.254718171}
In[]:=
NumberForm[{1.2^1.2^1.2^1.2,Sum[Log[1.2]^n/n!Sum[Sum[Sum[Binomial[n-k-a,c]Binomial[n-k,a]Binomial[n,k]k^aa^cc^(n-k-a-c),{c,0,n-k-a}],{a,0,n-k}],{k,0,n}],{n,0,25}],Sum[(1.2-1)^n/n!Sum[StirlingS1[n,m]Sum[Sum[Sum[Binomial[m-k-a,c]Binomial[m-k,a]Binomial[m,k]k^aa^cc^(m-k-a-c),{c,0,m-k-a}],{a,0,m-k}],{k,0,m}],{m,0,n}],{n,0,20}]},10]
Out[]//NumberForm=
{1.257043041,1.257043041,1.257043041}
In[]:=
NumberForm[{1.2^1.2^1.2^1.2^1.2,Sum[Log[1.2]^n/n!Sum[Sum[Sum[Sum[Binomial[n-k-j-a,b]Binomial[n-k-j,a]Binomial[n-k,j]Binomial[n,k]k^jj^aa^bb^(n-k-j-a-b),{b,0,n-k-j-a}],{a,0,n-k-j}],{j,0,n-k}],{k,0,n}],{n,0,25}],Sum[Sum[Sum[Sum[Sum[Sum[StirlingS1[n,m](1.2-1)^n/n!Binomial[m-k-j-a,b]Binomial[m-k-j,a]Binomial[m-k,j]Binomial[m,k]k^jj^aa^bb^(m-k-j-a-b),{b,0,m-k-j-a}],{a,0,m-k-j}],{j,0,m-k}],{k,0,m}],{m,0,n}],{n,0,25}]},10]
Out[]//NumberForm=
{1.257575982,1.257575982,1.257575982}