Table of Dirichlet Characters

​
modulus
11
χ(n)​n
0
1
2
3
4
5
6
7
8
9
10
χ
1
(n)
0
1
1
1
1
1
1
1
1
1
1
χ
2
(n)
0
1
π
5

-
2π
5

2π
5

4π
5

-
π
5

-
3π
5

3π
5

-
4π
5

-1
χ
3
(n)
0
1
2π
5

-
4π
5

4π
5

-
2π
5

-
2π
5

4π
5

-
4π
5

2π
5

1
χ
4
(n)
0
1
3π
5

4π
5

-
4π
5

2π
5

-
3π
5

π
5

-
π
5

-
2π
5

-1
χ
5
(n)
0
1
4π
5

2π
5

-
2π
5

-
4π
5

-
4π
5

-
2π
5

2π
5

4π
5

1
χ
6
(n)
0
1
-1
1
1
1
-1
-1
-1
1
-1
χ
7
(n)
0
1
-
4π
5

-
2π
5

2π
5

4π
5

4π
5

2π
5

-
2π
5

-
4π
5

1
χ
8
(n)
0
1
-
3π
5

-
4π
5

4π
5

-
2π
5

3π
5

-
π
5

π
5

2π
5

-1
χ
9
(n)
0
1
-
2π
5

4π
5

-
4π
5

2π
5

2π
5

-
4π
5

4π
5

-
2π
5

1
χ
10
(n)
0
1
-
π
5

2π
5

-
2π
5

-
4π
5

π
5

3π
5

-
3π
5

4π
5

-1
Produce tables of Dirichlet characters. A Dirichlet character
χ
modulo
m
is a multiplicative function that satisfies:
1.
χ(n)
is periodic with period
m
.
2.
χ(n)
is zero when
n
is not coprime to
m
.
3.
χ(n)
is an
th
m
root of unity when
n
is relatively prime to
m
.
4. There are
ϕ(m)
Dirichlet characters for a given
m
.

Details

Reference: T. Apostol, Introduction to Analytic Number Theory, New York: Springer-Verlag, 1976.

External Links

Number Theoretic Character (Wolfram MathWorld)

Permanent Citation

Roger Germundsson, Charles Pooh
​
​"Table of Dirichlet Characters"​
​http://demonstrations.wolfram.com/TableOfDirichletCharacters/​
​Wolfram Demonstrations Project​
​Published: December 7, 2008