https://math.stackexchange.com/questions/4900918/triple-integration-of-a-volleyball-serve
In[]:=
z==ay^2+by+c/.{{y3,z0},{y0,z2.43},{y-9,z2.02}};​​cylR=z==ay^2+by+c/.NSolve[%,{}][[1]]//Echo[#,"red cyl."]&;​​Maximize[%[[2]],y]/.{zz_,{Rule[y,yy_]}}{yyy,zzz};​​z==ay^2+by+c/.{{y9,z0},%,{y-9,z2.02}};​​cylG=z==ay^2+by+c/.NSolve[%,{}][[1]]//Echo[#,"green cyl."]&;​​​​parR={(y+9)*3/8,y,cylR[[2]]};​​parG={(y+9)*1/4,y,cylG[[2]]}/.y(3y+9)/2;​​parsurf=(1-t)parR+tparG;​​ExpandAll[parsurf]//N//Echo[#,"twisted face (parametric)"]&;​​​​netcourt=Graphics3D[{​​Polygon[{{-4.5,-9,0},{4.5,-9,0},{4.5,9,0},{-4.5,9,0}}],​​Line[{{-4.5,3,0},{4.5,3,0}}],​​Line[{{-4.5,-3,0},{4.5,-3,0}}],​​Line[{{-4.5,0,0},{-4.5,0,2.43}}],​​Line[{{4.5,0,0},{4.5,0,2.43}}],​​Polygon[{{-4.5,0,1.43},{4.5,0,1.43},{4.5,0,2.43},{-4.5,0,2.43}}]​​}];​​​​plot1=​​Show[​​ContourPlot3D[cylR,{x,-4.5,4.5},{y,-9,6},{z,0,5},RegionFunctionFunction[{x,y},y≥8/3Abs[x]-9],RegionBoundaryStyleNone,ContourStyle{Opacity[0.2],Red},MeshNone,BoundaryStyleNone],​​ContourPlot3D[cylG,{x,-4.5,4.5},{y,-9,9},{z,0,5},RegionFunctionFunction[{x,y},y≥4Abs[x]-9],RegionBoundaryStyleNone,ContourStyle{Opacity[0.2],Green},MeshNone,BoundaryStyleNone],​​ParametricPlot3D[parR,{y,-9,3},PlotStyle{Red,Thickness[.0075]}],​​(*previously:ParametricPlot3D[{(y+9)*1/4,y,paraB[[2]]},{y,-9,9},PlotStyle{Green,Thickness[.0075]}]*)​​ParametricPlot3D[parG,{y,-9,3},PlotStyle{Green,Thickness[.0075]}],​​ParametricPlot3D[parsurf,{y,-9,3},{t,0,1},MeshNone],​​netcourt,​​PlotRange{{-4.5,4.5},{-9,9},{0,5}},​​AxesLabel{x,y,z}​​]
»
red cyl.z2.43-0.596111y-0.0712963
2
y
»
green cyl.z3.81129-0.112222y-0.0345839
2
y
»
twisted face (parametric){3.375+0.375y,4.5t+y+0.5ty,2.43+0.17597t-0.596111y-0.0391044ty-0.0712963
2
y
-0.0065174t
2
y
}
Out[]=