Theorem proving jargon to WL dictionary

Terms

Expressions with patterns (free of predicates)

Predicates

Special head symbols (formal symbol, string or logical connective)

Function symbols

Other symbol heads

Atomic formulas/Atomic sentences/Atoms

Expressions with predicate heads

Variables (First-order logic)

Patterns x_, y_

Substitution

Rule with Verbatim pattern LHS
Verbatim[x_]->XXXX

Substitution instance

MatchQ pair

Unification

Turn MatchQ pair into a list of (Verbatim) pattern replacement rules
In[]:=
MatchQ[f[a,b],f[___,x_,y___]]
Out[]=
True
In[]:=
f[___,x_,y___]/.{Verbatim[x_]->a,Verbatim[y___]->b}
Out[]=
f[___,a,b]
In[]:=
unify[f[___,x___,y_],f[a,b]]
Out[]=
{x___a,y_b,x___Sequence[],y_b}
In[]:=
unify[f[OrderlessPatternSequence[x_,y_]],f[a,b]]
Out[]=
{x_a,y_b,x_b,y_a}

Most General Unifier(s)

In[]:=
unify[f[x_,y_],f[x_,x_]]
Out[]=
{x_x_,y_x_}

Ground atoms

No patterns

Logical connectives

Equivalence (≡): TwoWayRule
Implication (): Rule
Disjunction (∨): Alternatives, Except[LHS]  RHS
Conjunction (∧): meta-rule LHS
Not (¬): ¬A, ¬A ∨ ⊥, A  ⊥
True (⊤): ⊤, ⊤ ∨ ⊥, ⊥  ⊥, ⊥ ⇔ ⊥
False (⊥): ⊤  ⊥

Inference

Meta-rules, events, substitutions and cosubstitutions

Premise  conclusion

Meta-rule input and output

Clauses

Tokens
Standard clause - Predicate tokens
General clause - Predicate tokens + Term tokens

(Herbrand) interpretation

Set of true ground tokens

Model

True ground token

Consistency

Model exists

Contradiction

Inconsistent expression without function and predicate symbols

Proof

Sequence of clauses (assumptions)

Refutation

Derive contradiction

Saturation

Fixed point

Redundancy criterion

RuleSelectionFunction

Deduction

Adding tokens

Derivation

Adding and deleting tokens

Narrowing

Forbid inferences at positions of already existing (functional) tokens

Resolution

A and ¬A “annihilate”, expression substitution

Refutational Theorem Proving

Show that {Axioms, ¬ Hypothesis} is inconsistent