alldat={{{"A""AB","B""A"},"A",10},{{"B""AA","B""BB"},"B",10},{{"ABA""BBAA","BAA""AAB"},"BABBAAB",200},{{"AA""BABBBBA","BAB""A"},"ABAAB",200},{{"BAB""A","BAAA""B","BAAB""BABBBAA"},"BAABBBA",300},{{"BA""AAA","BA""BBBB","BAAAA"""},"BBBBAAAA",50},{{"B""BA","AAA""AA"},"BABBA",8},{{"BA""ABBB","BBBB""A"},"BABBA",8},{{"BA""ABBB","BBBB""A"},"BABBA",10},{{"B""AAB","A""A"},"BABBA",10},{{"B""AAB"},"BABBA",10},{{"ABB""AABA","BA""BB"},"BABBA",60},{{"ABAA""AABA","AB""ABAA"},"BABBA",10},{{"B""BB","BBB""AAAA"},"B",15},{{"AB""BA","BB""AABB"},"BABBA",10},{{"BB""A","AAA""BB","A""ABA"},"BABBA",10},{{"AB""B","AA""BB","AB""AAA"},"BABBA",10},{{"BBAA""A","AB""BABA"},"BABBA",10},{{"BBBA""BBBA","B""BAAB"},"BABBA",10},{{"BBB""ABBB","A""ABB"},"BABBA",5},{{"B""BAB","A""ABBB"},"BABBA",4},{{"B""BAB","A""ABBB"},"B",6},{{"B""BA","A""ABB"},"B",6},{{"B""BA","A""AB"},"B",6},{{"AB""BA","ABB""AABA","A""BB"},"BABBA",4},{{"AAA""A","BBAA""AB","ABB""ABBA"},"ABBAB",30},{{"AA""A","B""BAB","BBB""ABA"},"ABBAB",20},{{"BA""A","ABBB""A","BA""BBAA"},"ABBAB",30},{{"ABB""AAAB","AB""BB","BABA""AA"},"ABBAB",50},{{"B""B","BB""A","BAB""ABBA"},"ABBAB",50},{{"BAAB""BBA","BBA""BAAB","AAB""BBA"},"ABBAB",50},{{"BB""ABAB","BBAA""AAAB","ABAB""BBA"},"ABBAB",50},{{"ABB""BAAA","BBAA""BAB","BAAA""ABBA"},"ABBAB",50},{{"AABB""B","AA""BB","BAB""AAAB"},"ABBAB",50},{{"BA""BABA","BB""ABB","ABAA""B"},"ABBAB",50},{{"AAB""A","AB""AAAA","AAAB""ABB"},"ABBAB",50},{{"AAB""A","AB""AAAA","AAAB""ABB"},"ABBAB",100},{{"AB""BA","AA""AAB","AABA""B"},"ABBAB",30}};
Show[RPadGraphics[Sort[FromChars/@MWEvolve[{"ABB""BAAA","BBAA""BAB","BAAA""ABBA"},{"ABBAB"},50]]]];
FindLong[{rule_,init_,n_},max_]:=NestWhileList[MWStep[rule,#]&,{init},Length[#]<=max&]-2
MWEvolve[rule_,init_,t_]:=Nest[MWStep[rule,#]&,init,t]
alldat[[{11,1,2,14,18,16}]]
{{{BAAB},BABBA,10},{{AAB,BA},A,10},{{BAA,BBB},B,10},{{BBB,BBBAAAA},B,15},{{BBAAA,ABBABA},BABBA,10},{{BBA,AAABB,AABA},BABBA,10}}
alldat[[{11,3,4,5,31,37,28,6}]]
{{{BAAB},BABBA,10},{{ABABBAA,BAAAAB},BABBAAB,200},{{AABABBBBA,BABA},ABAAB,200},{{BABA,BAAAB,BAABBABBBAA},BAABBBA,300},{{BAABBBA,BBABAAB,AABBBA},ABBAB,50},{{AABA,ABAAAA,AAABABB},ABBAB,100},{{BAA,ABBBA,BABBAA},ABBAB,30},{{BAAAA,BABBBB,BAAAA},BBBBAAAA,50}}
MWEvolveSSX[rule_,init_,t_,max_:300]:=Module[{i=1},Catch[Nest[(i++;If[Length[#]>max,Throw[{i,#}],MWStep[rule,#]])&,init,t]]]
MWEvolveSSX[#1,{#2},2#3,300]&@@alldat[[11]];
alldat[[{11,1,2,14,18,16}]]
{{{BAAB},BABBA,10},{{AAB,BA},A,10},{{BAA,BBB},B,10},{{BBB,BBBAAAA},B,15},{{BBAAA,ABBABA},BABBA,10},{{BBA,AAABB,AABA},BABBA,10}}
MWEvolveSSX[#1,Flatten@{#2},2#3,300]&@@@alldat[[{11,1,2,14,18,16}]];
Head/@%
{List,List,List,List,List,List}
Length/@%160
{231,2,2,2,2,2}
First[%160]
Show[GraphicsRow[(LabelWrapper[RPadGraphics[Sort[FromChars/@#[[2]]]],NKSStringForm["step ``",#[[1]]],-.025]&[MWEvolveSSX[#1,Flatten@{#2},5#3,500]])&@@@{{{"B""AA","B""BB"},"B",10},{{"B""BB","BBB""AAAA"},"B",15},{{"A""AB","B""A"},"A",10},{{"BBAA""A","AB""BABA"},"BABBA",10},{{"BB""A","AAA""BB","A""ABA"},"BABBA",10}},0.01]];
Show[GraphicsColumn[GraphicsRow[#,.01]&/@Partition[(LabelWrapper[RPadGraphics[Sort[FromChars/@#[[2]]]],NKSStringForm["step ``",#[[1]]],-.025]&[MWEvolveSSX[#1,Flatten@{#2},5#3,250]])&@@@alldat[[{11,3,4,5,31,37,28,6}]],4],0.01]];